author_facet Xie, Fangqing
Kavalenka, Maryna N
Röger, Moritz
Albrecht, Daniel
Hölscher, Hendrik
Leuthold, Jürgen
Schimmel, Thomas
Xie, Fangqing
Kavalenka, Maryna N
Röger, Moritz
Albrecht, Daniel
Hölscher, Hendrik
Leuthold, Jürgen
Schimmel, Thomas
author Xie, Fangqing
Kavalenka, Maryna N
Röger, Moritz
Albrecht, Daniel
Hölscher, Hendrik
Leuthold, Jürgen
Schimmel, Thomas
spellingShingle Xie, Fangqing
Kavalenka, Maryna N
Röger, Moritz
Albrecht, Daniel
Hölscher, Hendrik
Leuthold, Jürgen
Schimmel, Thomas
Beilstein Journal of Nanotechnology
Copper atomic-scale transistors
Electrical and Electronic Engineering
General Physics and Astronomy
General Materials Science
author_sort xie, fangqing
spelling Xie, Fangqing Kavalenka, Maryna N Röger, Moritz Albrecht, Daniel Hölscher, Hendrik Leuthold, Jürgen Schimmel, Thomas 2190-4286 Beilstein Institut Electrical and Electronic Engineering General Physics and Astronomy General Materials Science http://dx.doi.org/10.3762/bjnano.8.57 <jats:p>We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO<jats:sub>4</jats:sub> + H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (<jats:italic>U</jats:italic><jats:sub>bias</jats:sub>) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1<jats:italic>G</jats:italic><jats:sub>0</jats:sub> (<jats:italic>G</jats:italic><jats:sub>0</jats:sub> = 2e<jats:sup>2</jats:sup>/h; with <jats:italic>e</jats:italic> being the electron charge, and <jats:italic>h</jats:italic> being Planck’s constant) or 2<jats:italic>G</jats:italic><jats:sub>0</jats:sub> by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.</jats:p> Copper atomic-scale transistors Beilstein Journal of Nanotechnology
doi_str_mv 10.3762/bjnano.8.57
facet_avail Online
Free
finc_class_facet Technik
Mathematik
Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzc2Mi9iam5hbm8uOC41Nw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzc2Mi9iam5hbm8uOC41Nw
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Beilstein Institut, 2017
imprint_str_mv Beilstein Institut, 2017
issn 2190-4286
issn_str_mv 2190-4286
language English
mega_collection Beilstein Institut (CrossRef)
match_str xie2017copperatomicscaletransistors
publishDateSort 2017
publisher Beilstein Institut
recordtype ai
record_format ai
series Beilstein Journal of Nanotechnology
source_id 49
title Copper atomic-scale transistors
title_unstemmed Copper atomic-scale transistors
title_full Copper atomic-scale transistors
title_fullStr Copper atomic-scale transistors
title_full_unstemmed Copper atomic-scale transistors
title_short Copper atomic-scale transistors
title_sort copper atomic-scale transistors
topic Electrical and Electronic Engineering
General Physics and Astronomy
General Materials Science
url http://dx.doi.org/10.3762/bjnano.8.57
publishDate 2017
physical 530-538
description <jats:p>We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO<jats:sub>4</jats:sub> + H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (<jats:italic>U</jats:italic><jats:sub>bias</jats:sub>) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1<jats:italic>G</jats:italic><jats:sub>0</jats:sub> (<jats:italic>G</jats:italic><jats:sub>0</jats:sub> = 2e<jats:sup>2</jats:sup>/h; with <jats:italic>e</jats:italic> being the electron charge, and <jats:italic>h</jats:italic> being Planck’s constant) or 2<jats:italic>G</jats:italic><jats:sub>0</jats:sub> by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.</jats:p>
container_start_page 530
container_title Beilstein Journal of Nanotechnology
container_volume 8
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792334298735443972
geogr_code not assigned
last_indexed 2024-03-01T14:25:48.544Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Copper+atomic-scale+transistors&rft.date=2017-03-01&genre=article&issn=2190-4286&volume=8&spage=530&epage=538&pages=530-538&jtitle=Beilstein+Journal+of+Nanotechnology&atitle=Copper+atomic-scale+transistors&aulast=Schimmel&aufirst=Thomas&rft_id=info%3Adoi%2F10.3762%2Fbjnano.8.57&rft.language%5B0%5D=eng
SOLR
_version_ 1792334298735443972
author Xie, Fangqing, Kavalenka, Maryna N, Röger, Moritz, Albrecht, Daniel, Hölscher, Hendrik, Leuthold, Jürgen, Schimmel, Thomas
author_facet Xie, Fangqing, Kavalenka, Maryna N, Röger, Moritz, Albrecht, Daniel, Hölscher, Hendrik, Leuthold, Jürgen, Schimmel, Thomas, Xie, Fangqing, Kavalenka, Maryna N, Röger, Moritz, Albrecht, Daniel, Hölscher, Hendrik, Leuthold, Jürgen, Schimmel, Thomas
author_sort xie, fangqing
container_start_page 530
container_title Beilstein Journal of Nanotechnology
container_volume 8
description <jats:p>We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO<jats:sub>4</jats:sub> + H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (<jats:italic>U</jats:italic><jats:sub>bias</jats:sub>) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1<jats:italic>G</jats:italic><jats:sub>0</jats:sub> (<jats:italic>G</jats:italic><jats:sub>0</jats:sub> = 2e<jats:sup>2</jats:sup>/h; with <jats:italic>e</jats:italic> being the electron charge, and <jats:italic>h</jats:italic> being Planck’s constant) or 2<jats:italic>G</jats:italic><jats:sub>0</jats:sub> by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.</jats:p>
doi_str_mv 10.3762/bjnano.8.57
facet_avail Online, Free
finc_class_facet Technik, Mathematik, Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzc2Mi9iam5hbm8uOC41Nw
imprint Beilstein Institut, 2017
imprint_str_mv Beilstein Institut, 2017
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 2190-4286
issn_str_mv 2190-4286
language English
last_indexed 2024-03-01T14:25:48.544Z
match_str xie2017copperatomicscaletransistors
mega_collection Beilstein Institut (CrossRef)
physical 530-538
publishDate 2017
publishDateSort 2017
publisher Beilstein Institut
record_format ai
recordtype ai
series Beilstein Journal of Nanotechnology
source_id 49
spelling Xie, Fangqing Kavalenka, Maryna N Röger, Moritz Albrecht, Daniel Hölscher, Hendrik Leuthold, Jürgen Schimmel, Thomas 2190-4286 Beilstein Institut Electrical and Electronic Engineering General Physics and Astronomy General Materials Science http://dx.doi.org/10.3762/bjnano.8.57 <jats:p>We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO<jats:sub>4</jats:sub> + H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (<jats:italic>U</jats:italic><jats:sub>bias</jats:sub>) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1<jats:italic>G</jats:italic><jats:sub>0</jats:sub> (<jats:italic>G</jats:italic><jats:sub>0</jats:sub> = 2e<jats:sup>2</jats:sup>/h; with <jats:italic>e</jats:italic> being the electron charge, and <jats:italic>h</jats:italic> being Planck’s constant) or 2<jats:italic>G</jats:italic><jats:sub>0</jats:sub> by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.</jats:p> Copper atomic-scale transistors Beilstein Journal of Nanotechnology
spellingShingle Xie, Fangqing, Kavalenka, Maryna N, Röger, Moritz, Albrecht, Daniel, Hölscher, Hendrik, Leuthold, Jürgen, Schimmel, Thomas, Beilstein Journal of Nanotechnology, Copper atomic-scale transistors, Electrical and Electronic Engineering, General Physics and Astronomy, General Materials Science
title Copper atomic-scale transistors
title_full Copper atomic-scale transistors
title_fullStr Copper atomic-scale transistors
title_full_unstemmed Copper atomic-scale transistors
title_short Copper atomic-scale transistors
title_sort copper atomic-scale transistors
title_unstemmed Copper atomic-scale transistors
topic Electrical and Electronic Engineering, General Physics and Astronomy, General Materials Science
url http://dx.doi.org/10.3762/bjnano.8.57