author_facet Wright, Terrence Michael
Calabrese, Ronald L.
Wright, Terrence Michael
Calabrese, Ronald L.
author Wright, Terrence Michael
Calabrese, Ronald L.
spellingShingle Wright, Terrence Michael
Calabrese, Ronald L.
The Journal of Neuroscience
Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
General Neuroscience
author_sort wright, terrence michael
spelling Wright, Terrence Michael Calabrese, Ronald L. 0270-6474 1529-2401 Society for Neuroscience General Neuroscience http://dx.doi.org/10.1523/jneurosci.4723-11.2011 <jats:p>Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (<jats:italic>Hirudo</jats:italic>sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.</jats:p> Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output The Journal of Neuroscience
doi_str_mv 10.1523/jneurosci.4723-11.2011
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuNDcyMy0xMS4yMDEx
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuNDcyMy0xMS4yMDEx
institution DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Society for Neuroscience, 2011
imprint_str_mv Society for Neuroscience, 2011
issn 0270-6474
1529-2401
issn_str_mv 0270-6474
1529-2401
language English
mega_collection Society for Neuroscience (CrossRef)
match_str wright2011patternsofpresynapticactivityandsynapticstrengthinteracttoproducemotoroutput
publishDateSort 2011
publisher Society for Neuroscience
recordtype ai
record_format ai
series The Journal of Neuroscience
source_id 49
title Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_unstemmed Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_full Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_fullStr Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_full_unstemmed Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_short Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_sort patterns of presynaptic activity and synaptic strength interact to produce motor output
topic General Neuroscience
url http://dx.doi.org/10.1523/jneurosci.4723-11.2011
publishDate 2011
physical 17555-17571
description <jats:p>Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (<jats:italic>Hirudo</jats:italic>sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.</jats:p>
container_issue 48
container_start_page 17555
container_title The Journal of Neuroscience
container_volume 31
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792331679741771785
geogr_code not assigned
last_indexed 2024-03-01T13:44:47.842Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Patterns+of+Presynaptic+Activity+and+Synaptic+Strength+Interact+to+Produce+Motor+Output&rft.date=2011-11-30&genre=article&issn=1529-2401&volume=31&issue=48&spage=17555&epage=17571&pages=17555-17571&jtitle=The+Journal+of+Neuroscience&atitle=Patterns+of+Presynaptic+Activity+and+Synaptic+Strength+Interact+to+Produce+Motor+Output&aulast=Calabrese&aufirst=Ronald+L.&rft_id=info%3Adoi%2F10.1523%2Fjneurosci.4723-11.2011&rft.language%5B0%5D=eng
SOLR
_version_ 1792331679741771785
author Wright, Terrence Michael, Calabrese, Ronald L.
author_facet Wright, Terrence Michael, Calabrese, Ronald L., Wright, Terrence Michael, Calabrese, Ronald L.
author_sort wright, terrence michael
container_issue 48
container_start_page 17555
container_title The Journal of Neuroscience
container_volume 31
description <jats:p>Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (<jats:italic>Hirudo</jats:italic>sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.</jats:p>
doi_str_mv 10.1523/jneurosci.4723-11.2011
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuNDcyMy0xMS4yMDEx
imprint Society for Neuroscience, 2011
imprint_str_mv Society for Neuroscience, 2011
institution DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0270-6474, 1529-2401
issn_str_mv 0270-6474, 1529-2401
language English
last_indexed 2024-03-01T13:44:47.842Z
match_str wright2011patternsofpresynapticactivityandsynapticstrengthinteracttoproducemotoroutput
mega_collection Society for Neuroscience (CrossRef)
physical 17555-17571
publishDate 2011
publishDateSort 2011
publisher Society for Neuroscience
record_format ai
recordtype ai
series The Journal of Neuroscience
source_id 49
spelling Wright, Terrence Michael Calabrese, Ronald L. 0270-6474 1529-2401 Society for Neuroscience General Neuroscience http://dx.doi.org/10.1523/jneurosci.4723-11.2011 <jats:p>Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (<jats:italic>Hirudo</jats:italic>sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.</jats:p> Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output The Journal of Neuroscience
spellingShingle Wright, Terrence Michael, Calabrese, Ronald L., The Journal of Neuroscience, Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output, General Neuroscience
title Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_full Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_fullStr Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_full_unstemmed Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_short Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
title_sort patterns of presynaptic activity and synaptic strength interact to produce motor output
title_unstemmed Patterns of Presynaptic Activity and Synaptic Strength Interact to Produce Motor Output
topic General Neuroscience
url http://dx.doi.org/10.1523/jneurosci.4723-11.2011