author_facet Zhao, Zuowei
Davis, Michael
Zhao, Zuowei
Davis, Michael
author Zhao, Zuowei
Davis, Michael
spellingShingle Zhao, Zuowei
Davis, Michael
The Journal of Neuroscience
Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
General Neuroscience
author_sort zhao, zuowei
spelling Zhao, Zuowei Davis, Michael 0270-6474 1529-2401 Society for Neuroscience General Neuroscience http://dx.doi.org/10.1523/jneurosci.2758-04.2004 <jats:p>The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(<jats:italic>F</jats:italic>)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.</jats:p> Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors The Journal of Neuroscience
doi_str_mv 10.1523/jneurosci.2758-04.2004
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuMjc1OC0wNC4yMDA0
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuMjc1OC0wNC4yMDA0
institution DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
imprint Society for Neuroscience, 2004
imprint_str_mv Society for Neuroscience, 2004
issn 0270-6474
1529-2401
issn_str_mv 0270-6474
1529-2401
language English
mega_collection Society for Neuroscience (CrossRef)
match_str zhao2004fearpotentiatedstartleinratsismediatedbyneuronsinthedeeplayersofthesuperiorcolliculusdeepmesencephalicnucleusoftherostralmidbrainthroughtheglutamatenonnmdareceptors
publishDateSort 2004
publisher Society for Neuroscience
recordtype ai
record_format ai
series The Journal of Neuroscience
source_id 49
title Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_unstemmed Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_full Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_fullStr Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_full_unstemmed Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_short Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_sort fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-nmda receptors
topic General Neuroscience
url http://dx.doi.org/10.1523/jneurosci.2758-04.2004
publishDate 2004
physical 10326-10334
description <jats:p>The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(<jats:italic>F</jats:italic>)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.</jats:p>
container_issue 46
container_start_page 10326
container_title The Journal of Neuroscience
container_volume 24
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792335690332110864
geogr_code not assigned
last_indexed 2024-03-01T14:46:13.36Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Fear-Potentiated+Startle+in+Rats+Is+Mediated+by+Neurons+in+the+Deep+Layers+of+the+Superior+Colliculus%2FDeep+Mesencephalic+Nucleus+of+the+Rostral+Midbrain+through+the+Glutamate+Non-NMDA+Receptors&rft.date=2004-11-17&genre=article&issn=1529-2401&volume=24&issue=46&spage=10326&epage=10334&pages=10326-10334&jtitle=The+Journal+of+Neuroscience&atitle=Fear-Potentiated+Startle+in+Rats+Is+Mediated+by+Neurons+in+the+Deep+Layers+of+the+Superior+Colliculus%2FDeep+Mesencephalic+Nucleus+of+the+Rostral+Midbrain+through+the+Glutamate+Non-NMDA+Receptors&aulast=Davis&aufirst=Michael&rft_id=info%3Adoi%2F10.1523%2Fjneurosci.2758-04.2004&rft.language%5B0%5D=eng
SOLR
_version_ 1792335690332110864
author Zhao, Zuowei, Davis, Michael
author_facet Zhao, Zuowei, Davis, Michael, Zhao, Zuowei, Davis, Michael
author_sort zhao, zuowei
container_issue 46
container_start_page 10326
container_title The Journal of Neuroscience
container_volume 24
description <jats:p>The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(<jats:italic>F</jats:italic>)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.</jats:p>
doi_str_mv 10.1523/jneurosci.2758-04.2004
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUyMy9qbmV1cm9zY2kuMjc1OC0wNC4yMDA0
imprint Society for Neuroscience, 2004
imprint_str_mv Society for Neuroscience, 2004
institution DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1
issn 0270-6474, 1529-2401
issn_str_mv 0270-6474, 1529-2401
language English
last_indexed 2024-03-01T14:46:13.36Z
match_str zhao2004fearpotentiatedstartleinratsismediatedbyneuronsinthedeeplayersofthesuperiorcolliculusdeepmesencephalicnucleusoftherostralmidbrainthroughtheglutamatenonnmdareceptors
mega_collection Society for Neuroscience (CrossRef)
physical 10326-10334
publishDate 2004
publishDateSort 2004
publisher Society for Neuroscience
record_format ai
recordtype ai
series The Journal of Neuroscience
source_id 49
spelling Zhao, Zuowei Davis, Michael 0270-6474 1529-2401 Society for Neuroscience General Neuroscience http://dx.doi.org/10.1523/jneurosci.2758-04.2004 <jats:p>The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(<jats:italic>F</jats:italic>)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.</jats:p> Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors The Journal of Neuroscience
spellingShingle Zhao, Zuowei, Davis, Michael, The Journal of Neuroscience, Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors, General Neuroscience
title Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_full Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_fullStr Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_full_unstemmed Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_short Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
title_sort fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-nmda receptors
title_unstemmed Fear-Potentiated Startle in Rats Is Mediated by Neurons in the Deep Layers of the Superior Colliculus/Deep Mesencephalic Nucleus of the Rostral Midbrain through the Glutamate Non-NMDA Receptors
topic General Neuroscience
url http://dx.doi.org/10.1523/jneurosci.2758-04.2004