author_facet Battistin, M.
Berry, S.
Bitadze, A.
Bonneau, P.
Botelho-Direito, J.
Boyd, G.
Corbaz, F.
Crespo-Lopez, O.
Da Riva, E.
Degeorge, C.
Deterre, C.
DiGirolamo, B.
Doubek, M.
Favre, G.
Godlewski, J.
Hallewell, G.
Katunin, S.
Lefils, D.
Lombard, D.
McMahon, S.
Nagai, K.
Robinson, D.
Rossi, C.
Rozanov, A.
Vacek, V.
Zwalinski, L.
Battistin, M.
Berry, S.
Bitadze, A.
Bonneau, P.
Botelho-Direito, J.
Boyd, G.
Corbaz, F.
Crespo-Lopez, O.
Da Riva, E.
Degeorge, C.
Deterre, C.
DiGirolamo, B.
Doubek, M.
Favre, G.
Godlewski, J.
Hallewell, G.
Katunin, S.
Lefils, D.
Lombard, D.
McMahon, S.
Nagai, K.
Robinson, D.
Rossi, C.
Rozanov, A.
Vacek, V.
Zwalinski, L.
author Battistin, M.
Berry, S.
Bitadze, A.
Bonneau, P.
Botelho-Direito, J.
Boyd, G.
Corbaz, F.
Crespo-Lopez, O.
Da Riva, E.
Degeorge, C.
Deterre, C.
DiGirolamo, B.
Doubek, M.
Favre, G.
Godlewski, J.
Hallewell, G.
Katunin, S.
Lefils, D.
Lombard, D.
McMahon, S.
Nagai, K.
Robinson, D.
Rossi, C.
Rozanov, A.
Vacek, V.
Zwalinski, L.
spellingShingle Battistin, M.
Berry, S.
Bitadze, A.
Bonneau, P.
Botelho-Direito, J.
Boyd, G.
Corbaz, F.
Crespo-Lopez, O.
Da Riva, E.
Degeorge, C.
Deterre, C.
DiGirolamo, B.
Doubek, M.
Favre, G.
Godlewski, J.
Hallewell, G.
Katunin, S.
Lefils, D.
Lombard, D.
McMahon, S.
Nagai, K.
Robinson, D.
Rossi, C.
Rozanov, A.
Vacek, V.
Zwalinski, L.
International Journal of Chemical Reactor Engineering
The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
General Chemical Engineering
author_sort battistin, m.
spelling Battistin, M. Berry, S. Bitadze, A. Bonneau, P. Botelho-Direito, J. Boyd, G. Corbaz, F. Crespo-Lopez, O. Da Riva, E. Degeorge, C. Deterre, C. DiGirolamo, B. Doubek, M. Favre, G. Godlewski, J. Hallewell, G. Katunin, S. Lefils, D. Lombard, D. McMahon, S. Nagai, K. Robinson, D. Rossi, C. Rozanov, A. Vacek, V. Zwalinski, L. 2194-5748 1542-6580 Walter de Gruyter GmbH General Chemical Engineering http://dx.doi.org/10.1515/ijcre-2015-0022 <jats:title>Abstract</jats:title> <jats:p>The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.</jats:p> The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider International Journal of Chemical Reactor Engineering
doi_str_mv 10.1515/ijcre-2015-0022
facet_avail Online
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUxNS9pamNyZS0yMDE1LTAwMjI
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUxNS9pamNyZS0yMDE1LTAwMjI
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Walter de Gruyter GmbH, 2015
imprint_str_mv Walter de Gruyter GmbH, 2015
issn 1542-6580
2194-5748
issn_str_mv 1542-6580
2194-5748
language Undetermined
mega_collection Walter de Gruyter GmbH (CrossRef)
match_str battistin2015thethermosiphoncoolingsystemoftheatlasexperimentatthecernlargehadroncollider
publishDateSort 2015
publisher Walter de Gruyter GmbH
recordtype ai
record_format ai
series International Journal of Chemical Reactor Engineering
source_id 49
title The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_unstemmed The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_full The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_fullStr The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_full_unstemmed The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_short The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_sort the thermosiphon cooling system of the atlas experiment at the cern large hadron collider
topic General Chemical Engineering
url http://dx.doi.org/10.1515/ijcre-2015-0022
publishDate 2015
physical 511-521
description <jats:title>Abstract</jats:title> <jats:p>The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.</jats:p>
container_issue 4
container_start_page 511
container_title International Journal of Chemical Reactor Engineering
container_volume 13
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792344662774644748
geogr_code not assigned
last_indexed 2024-03-01T17:11:09.017Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=The+Thermosiphon+Cooling+System+of+the+ATLAS+Experiment+at+the+CERN+Large+Hadron+Collider&rft.date=2015-12-01&genre=article&issn=1542-6580&volume=13&issue=4&spage=511&epage=521&pages=511-521&jtitle=International+Journal+of+Chemical+Reactor+Engineering&atitle=The+Thermosiphon+Cooling+System+of+the+ATLAS+Experiment+at+the+CERN+Large+Hadron+Collider&aulast=Zwalinski&aufirst=L.&rft_id=info%3Adoi%2F10.1515%2Fijcre-2015-0022&rft.language%5B0%5D=und
SOLR
_version_ 1792344662774644748
author Battistin, M., Berry, S., Bitadze, A., Bonneau, P., Botelho-Direito, J., Boyd, G., Corbaz, F., Crespo-Lopez, O., Da Riva, E., Degeorge, C., Deterre, C., DiGirolamo, B., Doubek, M., Favre, G., Godlewski, J., Hallewell, G., Katunin, S., Lefils, D., Lombard, D., McMahon, S., Nagai, K., Robinson, D., Rossi, C., Rozanov, A., Vacek, V., Zwalinski, L.
author_facet Battistin, M., Berry, S., Bitadze, A., Bonneau, P., Botelho-Direito, J., Boyd, G., Corbaz, F., Crespo-Lopez, O., Da Riva, E., Degeorge, C., Deterre, C., DiGirolamo, B., Doubek, M., Favre, G., Godlewski, J., Hallewell, G., Katunin, S., Lefils, D., Lombard, D., McMahon, S., Nagai, K., Robinson, D., Rossi, C., Rozanov, A., Vacek, V., Zwalinski, L., Battistin, M., Berry, S., Bitadze, A., Bonneau, P., Botelho-Direito, J., Boyd, G., Corbaz, F., Crespo-Lopez, O., Da Riva, E., Degeorge, C., Deterre, C., DiGirolamo, B., Doubek, M., Favre, G., Godlewski, J., Hallewell, G., Katunin, S., Lefils, D., Lombard, D., McMahon, S., Nagai, K., Robinson, D., Rossi, C., Rozanov, A., Vacek, V., Zwalinski, L.
author_sort battistin, m.
container_issue 4
container_start_page 511
container_title International Journal of Chemical Reactor Engineering
container_volume 13
description <jats:title>Abstract</jats:title> <jats:p>The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.</jats:p>
doi_str_mv 10.1515/ijcre-2015-0022
facet_avail Online
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTUxNS9pamNyZS0yMDE1LTAwMjI
imprint Walter de Gruyter GmbH, 2015
imprint_str_mv Walter de Gruyter GmbH, 2015
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1542-6580, 2194-5748
issn_str_mv 1542-6580, 2194-5748
language Undetermined
last_indexed 2024-03-01T17:11:09.017Z
match_str battistin2015thethermosiphoncoolingsystemoftheatlasexperimentatthecernlargehadroncollider
mega_collection Walter de Gruyter GmbH (CrossRef)
physical 511-521
publishDate 2015
publishDateSort 2015
publisher Walter de Gruyter GmbH
record_format ai
recordtype ai
series International Journal of Chemical Reactor Engineering
source_id 49
spelling Battistin, M. Berry, S. Bitadze, A. Bonneau, P. Botelho-Direito, J. Boyd, G. Corbaz, F. Crespo-Lopez, O. Da Riva, E. Degeorge, C. Deterre, C. DiGirolamo, B. Doubek, M. Favre, G. Godlewski, J. Hallewell, G. Katunin, S. Lefils, D. Lombard, D. McMahon, S. Nagai, K. Robinson, D. Rossi, C. Rozanov, A. Vacek, V. Zwalinski, L. 2194-5748 1542-6580 Walter de Gruyter GmbH General Chemical Engineering http://dx.doi.org/10.1515/ijcre-2015-0022 <jats:title>Abstract</jats:title> <jats:p>The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.</jats:p> The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider International Journal of Chemical Reactor Engineering
spellingShingle Battistin, M., Berry, S., Bitadze, A., Bonneau, P., Botelho-Direito, J., Boyd, G., Corbaz, F., Crespo-Lopez, O., Da Riva, E., Degeorge, C., Deterre, C., DiGirolamo, B., Doubek, M., Favre, G., Godlewski, J., Hallewell, G., Katunin, S., Lefils, D., Lombard, D., McMahon, S., Nagai, K., Robinson, D., Rossi, C., Rozanov, A., Vacek, V., Zwalinski, L., International Journal of Chemical Reactor Engineering, The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider, General Chemical Engineering
title The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_full The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_fullStr The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_full_unstemmed The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_short The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
title_sort the thermosiphon cooling system of the atlas experiment at the cern large hadron collider
title_unstemmed The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider
topic General Chemical Engineering
url http://dx.doi.org/10.1515/ijcre-2015-0022