author_facet Wei, Qiang
Wang, Jiyu
Zhao, Meiyu
Zhang, Meixia
Song, Yuzhi
Song, Peng
Wei, Qiang
Wang, Jiyu
Zhao, Meiyu
Zhang, Meixia
Song, Yuzhi
Song, Peng
author Wei, Qiang
Wang, Jiyu
Zhao, Meiyu
Zhang, Meixia
Song, Yuzhi
Song, Peng
spellingShingle Wei, Qiang
Wang, Jiyu
Zhao, Meiyu
Zhang, Meixia
Song, Yuzhi
Song, Peng
Canadian Journal of Chemistry
A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
Organic Chemistry
General Chemistry
Catalysis
author_sort wei, qiang
spelling Wei, Qiang Wang, Jiyu Zhao, Meiyu Zhang, Meixia Song, Yuzhi Song, Peng 0008-4042 1480-3291 Canadian Science Publishing Organic Chemistry General Chemistry Catalysis http://dx.doi.org/10.1139/cjc-2017-0533 <jats:p> The excited-state proton transfer (ESPT) dynamical behavior of aloesaponarin I (ASI) was studied using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Our calculated vertical excitation energies based on TDDFT reproduced the experimental absorption and fluorescence spectra well [Nagaoka et al. J. Phys. Chem. B, 117, 4347 (2013)]. Two intramolecular hydrogen bonds were confirmed to be strengthened in the S<jats:sub>1</jats:sub> state, which makes ESPT possible. Herein, the ESPT process is more likely to happen, along with one hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>). Qualitative analyses about charge distribution further demonstrate that the ESPT process could occur because of the intramolecular charge transfer. Our constructed potential energy surfaces of both S<jats:sub>0</jats:sub> and S<jats:sub>1</jats:sub> states show that a single proton transfer reactive is more reasonable along with the intramolecular hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>) rather than O<jats:sub>4</jats:sub>–H<jats:sub>5</jats:sub>⋯O<jats:sub>6</jats:sub> in the S<jats:sub>1</jats:sub> stated potential energy surface. Then, ASI-SPT* decays to the ground state with a 640 nm fluorescence; subsequently, the ASI-SPT form shows that reverse ground state single-proton transfer back to the ASI structure occurs. Particularly, dependent on relatively accurate potential energy barriers among these excited-state stable structures, we confirmed the excited-state single proton transfer process rather than using the controversial nodal plane model. </jats:p> A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I Canadian Journal of Chemistry
doi_str_mv 10.1139/cjc-2017-0533
facet_avail Online
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEzOS9jamMtMjAxNy0wNTMz
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEzOS9jamMtMjAxNy0wNTMz
institution DE-Pl11
DE-Rs1
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
imprint Canadian Science Publishing, 2018
imprint_str_mv Canadian Science Publishing, 2018
issn 0008-4042
1480-3291
issn_str_mv 0008-4042
1480-3291
language English
mega_collection Canadian Science Publishing (CrossRef)
match_str wei2018atheoreticalinvestigationonexcitedstatesingleordoubleprotontransferprocessforaloesaponarini
publishDateSort 2018
publisher Canadian Science Publishing
recordtype ai
record_format ai
series Canadian Journal of Chemistry
source_id 49
title A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_unstemmed A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_full A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_fullStr A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_full_unstemmed A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_short A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_sort a theoretical investigation on excited-state single or double proton transfer process for aloesaponarin i
topic Organic Chemistry
General Chemistry
Catalysis
url http://dx.doi.org/10.1139/cjc-2017-0533
publishDate 2018
physical 83-88
description <jats:p> The excited-state proton transfer (ESPT) dynamical behavior of aloesaponarin I (ASI) was studied using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Our calculated vertical excitation energies based on TDDFT reproduced the experimental absorption and fluorescence spectra well [Nagaoka et al. J. Phys. Chem. B, 117, 4347 (2013)]. Two intramolecular hydrogen bonds were confirmed to be strengthened in the S<jats:sub>1</jats:sub> state, which makes ESPT possible. Herein, the ESPT process is more likely to happen, along with one hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>). Qualitative analyses about charge distribution further demonstrate that the ESPT process could occur because of the intramolecular charge transfer. Our constructed potential energy surfaces of both S<jats:sub>0</jats:sub> and S<jats:sub>1</jats:sub> states show that a single proton transfer reactive is more reasonable along with the intramolecular hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>) rather than O<jats:sub>4</jats:sub>–H<jats:sub>5</jats:sub>⋯O<jats:sub>6</jats:sub> in the S<jats:sub>1</jats:sub> stated potential energy surface. Then, ASI-SPT* decays to the ground state with a 640 nm fluorescence; subsequently, the ASI-SPT form shows that reverse ground state single-proton transfer back to the ASI structure occurs. Particularly, dependent on relatively accurate potential energy barriers among these excited-state stable structures, we confirmed the excited-state single proton transfer process rather than using the controversial nodal plane model. </jats:p>
container_issue 1
container_start_page 83
container_title Canadian Journal of Chemistry
container_volume 96
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792333350506070031
geogr_code not assigned
last_indexed 2024-03-01T14:11:21.077Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=A+theoretical+investigation+on+excited-state+single+or+double+proton+transfer+process+for+aloesaponarin+I&rft.date=2018-01-01&genre=article&issn=1480-3291&volume=96&issue=1&spage=83&epage=88&pages=83-88&jtitle=Canadian+Journal+of+Chemistry&atitle=A+theoretical+investigation+on+excited-state+single+or+double+proton+transfer+process+for+aloesaponarin+I&aulast=Song&aufirst=Peng&rft_id=info%3Adoi%2F10.1139%2Fcjc-2017-0533&rft.language%5B0%5D=eng
SOLR
_version_ 1792333350506070031
author Wei, Qiang, Wang, Jiyu, Zhao, Meiyu, Zhang, Meixia, Song, Yuzhi, Song, Peng
author_facet Wei, Qiang, Wang, Jiyu, Zhao, Meiyu, Zhang, Meixia, Song, Yuzhi, Song, Peng, Wei, Qiang, Wang, Jiyu, Zhao, Meiyu, Zhang, Meixia, Song, Yuzhi, Song, Peng
author_sort wei, qiang
container_issue 1
container_start_page 83
container_title Canadian Journal of Chemistry
container_volume 96
description <jats:p> The excited-state proton transfer (ESPT) dynamical behavior of aloesaponarin I (ASI) was studied using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Our calculated vertical excitation energies based on TDDFT reproduced the experimental absorption and fluorescence spectra well [Nagaoka et al. J. Phys. Chem. B, 117, 4347 (2013)]. Two intramolecular hydrogen bonds were confirmed to be strengthened in the S<jats:sub>1</jats:sub> state, which makes ESPT possible. Herein, the ESPT process is more likely to happen, along with one hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>). Qualitative analyses about charge distribution further demonstrate that the ESPT process could occur because of the intramolecular charge transfer. Our constructed potential energy surfaces of both S<jats:sub>0</jats:sub> and S<jats:sub>1</jats:sub> states show that a single proton transfer reactive is more reasonable along with the intramolecular hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>) rather than O<jats:sub>4</jats:sub>–H<jats:sub>5</jats:sub>⋯O<jats:sub>6</jats:sub> in the S<jats:sub>1</jats:sub> stated potential energy surface. Then, ASI-SPT* decays to the ground state with a 640 nm fluorescence; subsequently, the ASI-SPT form shows that reverse ground state single-proton transfer back to the ASI structure occurs. Particularly, dependent on relatively accurate potential energy barriers among these excited-state stable structures, we confirmed the excited-state single proton transfer process rather than using the controversial nodal plane model. </jats:p>
doi_str_mv 10.1139/cjc-2017-0533
facet_avail Online
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEzOS9jamMtMjAxNy0wNTMz
imprint Canadian Science Publishing, 2018
imprint_str_mv Canadian Science Publishing, 2018
institution DE-Pl11, DE-Rs1, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15
issn 0008-4042, 1480-3291
issn_str_mv 0008-4042, 1480-3291
language English
last_indexed 2024-03-01T14:11:21.077Z
match_str wei2018atheoreticalinvestigationonexcitedstatesingleordoubleprotontransferprocessforaloesaponarini
mega_collection Canadian Science Publishing (CrossRef)
physical 83-88
publishDate 2018
publishDateSort 2018
publisher Canadian Science Publishing
record_format ai
recordtype ai
series Canadian Journal of Chemistry
source_id 49
spelling Wei, Qiang Wang, Jiyu Zhao, Meiyu Zhang, Meixia Song, Yuzhi Song, Peng 0008-4042 1480-3291 Canadian Science Publishing Organic Chemistry General Chemistry Catalysis http://dx.doi.org/10.1139/cjc-2017-0533 <jats:p> The excited-state proton transfer (ESPT) dynamical behavior of aloesaponarin I (ASI) was studied using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Our calculated vertical excitation energies based on TDDFT reproduced the experimental absorption and fluorescence spectra well [Nagaoka et al. J. Phys. Chem. B, 117, 4347 (2013)]. Two intramolecular hydrogen bonds were confirmed to be strengthened in the S<jats:sub>1</jats:sub> state, which makes ESPT possible. Herein, the ESPT process is more likely to happen, along with one hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>). Qualitative analyses about charge distribution further demonstrate that the ESPT process could occur because of the intramolecular charge transfer. Our constructed potential energy surfaces of both S<jats:sub>0</jats:sub> and S<jats:sub>1</jats:sub> states show that a single proton transfer reactive is more reasonable along with the intramolecular hydrogen bond (O<jats:sub>1</jats:sub>–H<jats:sub>2</jats:sub>⋯O<jats:sub>3</jats:sub>) rather than O<jats:sub>4</jats:sub>–H<jats:sub>5</jats:sub>⋯O<jats:sub>6</jats:sub> in the S<jats:sub>1</jats:sub> stated potential energy surface. Then, ASI-SPT* decays to the ground state with a 640 nm fluorescence; subsequently, the ASI-SPT form shows that reverse ground state single-proton transfer back to the ASI structure occurs. Particularly, dependent on relatively accurate potential energy barriers among these excited-state stable structures, we confirmed the excited-state single proton transfer process rather than using the controversial nodal plane model. </jats:p> A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I Canadian Journal of Chemistry
spellingShingle Wei, Qiang, Wang, Jiyu, Zhao, Meiyu, Zhang, Meixia, Song, Yuzhi, Song, Peng, Canadian Journal of Chemistry, A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I, Organic Chemistry, General Chemistry, Catalysis
title A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_full A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_fullStr A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_full_unstemmed A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_short A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
title_sort a theoretical investigation on excited-state single or double proton transfer process for aloesaponarin i
title_unstemmed A theoretical investigation on excited-state single or double proton transfer process for aloesaponarin I
topic Organic Chemistry, General Chemistry, Catalysis
url http://dx.doi.org/10.1139/cjc-2017-0533