author_facet Xu, Tao
Wang, Xuyang
Meng, Lu
Zhu, Mengqi
Wu, Jing
Xu, Yuanyuan
Zhang, Ying
Zhang, Wenhong
Xu, Tao
Wang, Xuyang
Meng, Lu
Zhu, Mengqi
Wu, Jing
Xu, Yuanyuan
Zhang, Ying
Zhang, Wenhong
author Xu, Tao
Wang, Xuyang
Meng, Lu
Zhu, Mengqi
Wu, Jing
Xu, Yuanyuan
Zhang, Ying
Zhang, Wenhong
spellingShingle Xu, Tao
Wang, Xuyang
Meng, Lu
Zhu, Mengqi
Wu, Jing
Xu, Yuanyuan
Zhang, Ying
Zhang, Wenhong
mSphere
Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
Molecular Biology
Microbiology
author_sort xu, tao
spelling Xu, Tao Wang, Xuyang Meng, Lu Zhu, Mengqi Wu, Jing Xu, Yuanyuan Zhang, Ying Zhang, Wenhong 2379-5042 American Society for Microbiology Molecular Biology Microbiology http://dx.doi.org/10.1128/msphere.00862-19 <jats:p> Various genes have been identified to be involved in bacterial persister formation regardless of the presence or absence of persister genes. Despite recent discoveries of the roles of ATP and membrane potential in persister formation, the key element that triggers change of ATP or membrane potential remains elusive. Our work demonstrates that Mg <jats:sup>2+</jats:sup> instead of other ions or nutrient components is the key element for persistence by inducing a decrease of cytoplasmic ATP, which subsequently induces persister formation. In addition, we observed tight regulation of genes for Mg <jats:sup>2+</jats:sup> transport in different growth phases in <jats:named-content content-type="genus-species">S. aureus</jats:named-content> . These findings indicate that despite being a key nutrient, Mg <jats:sup>2+</jats:sup> also served as a key signal in persister formation during growth. </jats:p> Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP mSphere
doi_str_mv 10.1128/msphere.00862-19
facet_avail Online
Free
finc_class_facet Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tc3BoZXJlLjAwODYyLTE5
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tc3BoZXJlLjAwODYyLTE5
institution DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
imprint American Society for Microbiology, 2020
imprint_str_mv American Society for Microbiology, 2020
issn 2379-5042
issn_str_mv 2379-5042
language English
mega_collection American Society for Microbiology (CrossRef)
match_str xu2020magnesiumlinksstarvationmediatedantibioticpersistencetoatp
publishDateSort 2020
publisher American Society for Microbiology
recordtype ai
record_format ai
series mSphere
source_id 49
title Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_unstemmed Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_full Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_fullStr Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_full_unstemmed Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_short Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_sort magnesium links starvation-mediated antibiotic persistence to atp
topic Molecular Biology
Microbiology
url http://dx.doi.org/10.1128/msphere.00862-19
publishDate 2020
physical
description <jats:p> Various genes have been identified to be involved in bacterial persister formation regardless of the presence or absence of persister genes. Despite recent discoveries of the roles of ATP and membrane potential in persister formation, the key element that triggers change of ATP or membrane potential remains elusive. Our work demonstrates that Mg <jats:sup>2+</jats:sup> instead of other ions or nutrient components is the key element for persistence by inducing a decrease of cytoplasmic ATP, which subsequently induces persister formation. In addition, we observed tight regulation of genes for Mg <jats:sup>2+</jats:sup> transport in different growth phases in <jats:named-content content-type="genus-species">S. aureus</jats:named-content> . These findings indicate that despite being a key nutrient, Mg <jats:sup>2+</jats:sup> also served as a key signal in persister formation during growth. </jats:p>
container_issue 1
container_start_page 0
container_title mSphere
container_volume 5
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343419728691203
geogr_code not assigned
last_indexed 2024-03-01T16:51:25.159Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Magnesium+Links+Starvation-Mediated+Antibiotic+Persistence+to+ATP&rft.date=2020-02-26&genre=article&issn=2379-5042&volume=5&issue=1&jtitle=mSphere&atitle=Magnesium+Links+Starvation-Mediated+Antibiotic+Persistence+to+ATP&aulast=Zhang&aufirst=Wenhong&rft_id=info%3Adoi%2F10.1128%2Fmsphere.00862-19&rft.language%5B0%5D=eng
SOLR
_version_ 1792343419728691203
author Xu, Tao, Wang, Xuyang, Meng, Lu, Zhu, Mengqi, Wu, Jing, Xu, Yuanyuan, Zhang, Ying, Zhang, Wenhong
author_facet Xu, Tao, Wang, Xuyang, Meng, Lu, Zhu, Mengqi, Wu, Jing, Xu, Yuanyuan, Zhang, Ying, Zhang, Wenhong, Xu, Tao, Wang, Xuyang, Meng, Lu, Zhu, Mengqi, Wu, Jing, Xu, Yuanyuan, Zhang, Ying, Zhang, Wenhong
author_sort xu, tao
container_issue 1
container_start_page 0
container_title mSphere
container_volume 5
description <jats:p> Various genes have been identified to be involved in bacterial persister formation regardless of the presence or absence of persister genes. Despite recent discoveries of the roles of ATP and membrane potential in persister formation, the key element that triggers change of ATP or membrane potential remains elusive. Our work demonstrates that Mg <jats:sup>2+</jats:sup> instead of other ions or nutrient components is the key element for persistence by inducing a decrease of cytoplasmic ATP, which subsequently induces persister formation. In addition, we observed tight regulation of genes for Mg <jats:sup>2+</jats:sup> transport in different growth phases in <jats:named-content content-type="genus-species">S. aureus</jats:named-content> . These findings indicate that despite being a key nutrient, Mg <jats:sup>2+</jats:sup> also served as a key signal in persister formation during growth. </jats:p>
doi_str_mv 10.1128/msphere.00862-19
facet_avail Online, Free
finc_class_facet Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tc3BoZXJlLjAwODYyLTE5
imprint American Society for Microbiology, 2020
imprint_str_mv American Society for Microbiology, 2020
institution DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14
issn 2379-5042
issn_str_mv 2379-5042
language English
last_indexed 2024-03-01T16:51:25.159Z
match_str xu2020magnesiumlinksstarvationmediatedantibioticpersistencetoatp
mega_collection American Society for Microbiology (CrossRef)
physical
publishDate 2020
publishDateSort 2020
publisher American Society for Microbiology
record_format ai
recordtype ai
series mSphere
source_id 49
spelling Xu, Tao Wang, Xuyang Meng, Lu Zhu, Mengqi Wu, Jing Xu, Yuanyuan Zhang, Ying Zhang, Wenhong 2379-5042 American Society for Microbiology Molecular Biology Microbiology http://dx.doi.org/10.1128/msphere.00862-19 <jats:p> Various genes have been identified to be involved in bacterial persister formation regardless of the presence or absence of persister genes. Despite recent discoveries of the roles of ATP and membrane potential in persister formation, the key element that triggers change of ATP or membrane potential remains elusive. Our work demonstrates that Mg <jats:sup>2+</jats:sup> instead of other ions or nutrient components is the key element for persistence by inducing a decrease of cytoplasmic ATP, which subsequently induces persister formation. In addition, we observed tight regulation of genes for Mg <jats:sup>2+</jats:sup> transport in different growth phases in <jats:named-content content-type="genus-species">S. aureus</jats:named-content> . These findings indicate that despite being a key nutrient, Mg <jats:sup>2+</jats:sup> also served as a key signal in persister formation during growth. </jats:p> Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP mSphere
spellingShingle Xu, Tao, Wang, Xuyang, Meng, Lu, Zhu, Mengqi, Wu, Jing, Xu, Yuanyuan, Zhang, Ying, Zhang, Wenhong, mSphere, Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP, Molecular Biology, Microbiology
title Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_full Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_fullStr Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_full_unstemmed Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_short Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
title_sort magnesium links starvation-mediated antibiotic persistence to atp
title_unstemmed Magnesium Links Starvation-Mediated Antibiotic Persistence to ATP
topic Molecular Biology, Microbiology
url http://dx.doi.org/10.1128/msphere.00862-19