author_facet Valderrama, J. Andrés
Gómez-Álvarez, Helena
Martín-Moldes, Zaira
Berbís, M. Álvaro
Cañada, F. Javier
Durante-Rodríguez, Gonzalo
Díaz, Eduardo
Valderrama, J. Andrés
Gómez-Álvarez, Helena
Martín-Moldes, Zaira
Berbís, M. Álvaro
Cañada, F. Javier
Durante-Rodríguez, Gonzalo
Díaz, Eduardo
author Valderrama, J. Andrés
Gómez-Álvarez, Helena
Martín-Moldes, Zaira
Berbís, M. Álvaro
Cañada, F. Javier
Durante-Rodríguez, Gonzalo
Díaz, Eduardo
spellingShingle Valderrama, J. Andrés
Gómez-Álvarez, Helena
Martín-Moldes, Zaira
Berbís, M. Álvaro
Cañada, F. Javier
Durante-Rodríguez, Gonzalo
Díaz, Eduardo
mBio
A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
Virology
Microbiology
author_sort valderrama, j. andrés
spelling Valderrama, J. Andrés Gómez-Álvarez, Helena Martín-Moldes, Zaira Berbís, M. Álvaro Cañada, F. Javier Durante-Rodríguez, Gonzalo Díaz, Eduardo 2161-2129 2150-7511 American Society for Microbiology Virology Microbiology http://dx.doi.org/10.1128/mbio.00059-19 <jats:p> Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium <jats:italic>Azoarcus</jats:italic> sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state. </jats:p> A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in <i>Azoarcus</i> sp. CIB mBio
doi_str_mv 10.1128/mbio.00059-19
facet_avail Online
Free
finc_class_facet Medizin
Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tYmlvLjAwMDU5LTE5
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tYmlvLjAwMDU5LTE5
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint American Society for Microbiology, 2019
imprint_str_mv American Society for Microbiology, 2019
issn 2161-2129
2150-7511
issn_str_mv 2161-2129
2150-7511
language English
mega_collection American Society for Microbiology (CrossRef)
match_str valderrama2019anovelredoxsensinghistidinekinasethatcontrolscarboncataboliterepressioninazoarcusspcib
publishDateSort 2019
publisher American Society for Microbiology
recordtype ai
record_format ai
series mBio
source_id 49
title A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_unstemmed A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_full A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_fullStr A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_full_unstemmed A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_short A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_sort a novel redox-sensing histidine kinase that controls carbon catabolite repression in <i>azoarcus</i> sp. cib
topic Virology
Microbiology
url http://dx.doi.org/10.1128/mbio.00059-19
publishDate 2019
physical
description <jats:p> Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium <jats:italic>Azoarcus</jats:italic> sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state. </jats:p>
container_issue 2
container_start_page 0
container_title mBio
container_volume 10
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792339398807781382
geogr_code not assigned
last_indexed 2024-03-01T15:47:29.284Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=A+Novel+Redox-Sensing+Histidine+Kinase+That+Controls+Carbon+Catabolite+Repression+in++++++++++++Azoarcus++++++++++++sp.+CIB&rft.date=2019-04-30&genre=article&issn=2150-7511&volume=10&issue=2&jtitle=mBio&atitle=A+Novel+Redox-Sensing+Histidine+Kinase+That+Controls+Carbon+Catabolite+Repression+in%0A++++++++++++%3Ci%3EAzoarcus%3C%2Fi%3E%0A++++++++++++sp.+CIB&aulast=D%C3%ADaz&aufirst=Eduardo&rft_id=info%3Adoi%2F10.1128%2Fmbio.00059-19&rft.language%5B0%5D=eng
SOLR
_version_ 1792339398807781382
author Valderrama, J. Andrés, Gómez-Álvarez, Helena, Martín-Moldes, Zaira, Berbís, M. Álvaro, Cañada, F. Javier, Durante-Rodríguez, Gonzalo, Díaz, Eduardo
author_facet Valderrama, J. Andrés, Gómez-Álvarez, Helena, Martín-Moldes, Zaira, Berbís, M. Álvaro, Cañada, F. Javier, Durante-Rodríguez, Gonzalo, Díaz, Eduardo, Valderrama, J. Andrés, Gómez-Álvarez, Helena, Martín-Moldes, Zaira, Berbís, M. Álvaro, Cañada, F. Javier, Durante-Rodríguez, Gonzalo, Díaz, Eduardo
author_sort valderrama, j. andrés
container_issue 2
container_start_page 0
container_title mBio
container_volume 10
description <jats:p> Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium <jats:italic>Azoarcus</jats:italic> sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state. </jats:p>
doi_str_mv 10.1128/mbio.00059-19
facet_avail Online, Free
finc_class_facet Medizin, Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9tYmlvLjAwMDU5LTE5
imprint American Society for Microbiology, 2019
imprint_str_mv American Society for Microbiology, 2019
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 2161-2129, 2150-7511
issn_str_mv 2161-2129, 2150-7511
language English
last_indexed 2024-03-01T15:47:29.284Z
match_str valderrama2019anovelredoxsensinghistidinekinasethatcontrolscarboncataboliterepressioninazoarcusspcib
mega_collection American Society for Microbiology (CrossRef)
physical
publishDate 2019
publishDateSort 2019
publisher American Society for Microbiology
record_format ai
recordtype ai
series mBio
source_id 49
spelling Valderrama, J. Andrés Gómez-Álvarez, Helena Martín-Moldes, Zaira Berbís, M. Álvaro Cañada, F. Javier Durante-Rodríguez, Gonzalo Díaz, Eduardo 2161-2129 2150-7511 American Society for Microbiology Virology Microbiology http://dx.doi.org/10.1128/mbio.00059-19 <jats:p> Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium <jats:italic>Azoarcus</jats:italic> sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state. </jats:p> A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in <i>Azoarcus</i> sp. CIB mBio
spellingShingle Valderrama, J. Andrés, Gómez-Álvarez, Helena, Martín-Moldes, Zaira, Berbís, M. Álvaro, Cañada, F. Javier, Durante-Rodríguez, Gonzalo, Díaz, Eduardo, mBio, A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB, Virology, Microbiology
title A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_full A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_fullStr A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_full_unstemmed A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_short A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
title_sort a novel redox-sensing histidine kinase that controls carbon catabolite repression in <i>azoarcus</i> sp. cib
title_unstemmed A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB
topic Virology, Microbiology
url http://dx.doi.org/10.1128/mbio.00059-19