author_facet Pu, Tianning
Liang, Jingdan
Mei, Zhiling
Yang, Yan
Wang, Jialiang
Zhang, Wei
Liang, Wei-Jun
Zhou, Xiufen
Deng, Zixin
Wang, Zhijun
Pu, Tianning
Liang, Jingdan
Mei, Zhiling
Yang, Yan
Wang, Jialiang
Zhang, Wei
Liang, Wei-Jun
Zhou, Xiufen
Deng, Zixin
Wang, Zhijun
author Pu, Tianning
Liang, Jingdan
Mei, Zhiling
Yang, Yan
Wang, Jialiang
Zhang, Wei
Liang, Wei-Jun
Zhou, Xiufen
Deng, Zixin
Wang, Zhijun
spellingShingle Pu, Tianning
Liang, Jingdan
Mei, Zhiling
Yang, Yan
Wang, Jialiang
Zhang, Wei
Liang, Wei-Jun
Zhou, Xiufen
Deng, Zixin
Wang, Zhijun
Applied and Environmental Microbiology
Phosphorothioated DNA Is Shielded from Oxidative Damage
Ecology
Applied Microbiology and Biotechnology
Food Science
Biotechnology
author_sort pu, tianning
spelling Pu, Tianning Liang, Jingdan Mei, Zhiling Yang, Yan Wang, Jialiang Zhang, Wei Liang, Wei-Jun Zhou, Xiufen Deng, Zixin Wang, Zhijun 0099-2240 1098-5336 American Society for Microbiology Ecology Applied Microbiology and Biotechnology Food Science Biotechnology http://dx.doi.org/10.1128/aem.00104-19 <jats:p> DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient <jats:named-content content-type="genus-species">E. coli</jats:named-content> Hpx <jats:sup>−</jats:sup> strain restores H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> damage. </jats:p> Phosphorothioated DNA Is Shielded from Oxidative Damage Applied and Environmental Microbiology
doi_str_mv 10.1128/aem.00104-19
facet_avail Online
Free
finc_class_facet Geographie
Biologie
Technik
Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9hZW0uMDAxMDQtMTk
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9hZW0uMDAxMDQtMTk
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint American Society for Microbiology, 2019
imprint_str_mv American Society for Microbiology, 2019
issn 0099-2240
1098-5336
issn_str_mv 0099-2240
1098-5336
language English
mega_collection American Society for Microbiology (CrossRef)
match_str pu2019phosphorothioateddnaisshieldedfromoxidativedamage
publishDateSort 2019
publisher American Society for Microbiology
recordtype ai
record_format ai
series Applied and Environmental Microbiology
source_id 49
title Phosphorothioated DNA Is Shielded from Oxidative Damage
title_unstemmed Phosphorothioated DNA Is Shielded from Oxidative Damage
title_full Phosphorothioated DNA Is Shielded from Oxidative Damage
title_fullStr Phosphorothioated DNA Is Shielded from Oxidative Damage
title_full_unstemmed Phosphorothioated DNA Is Shielded from Oxidative Damage
title_short Phosphorothioated DNA Is Shielded from Oxidative Damage
title_sort phosphorothioated dna is shielded from oxidative damage
topic Ecology
Applied Microbiology and Biotechnology
Food Science
Biotechnology
url http://dx.doi.org/10.1128/aem.00104-19
publishDate 2019
physical
description <jats:p> DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient <jats:named-content content-type="genus-species">E. coli</jats:named-content> Hpx <jats:sup>−</jats:sup> strain restores H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> damage. </jats:p>
container_issue 8
container_start_page 0
container_title Applied and Environmental Microbiology
container_volume 85
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792333166044774407
geogr_code not assigned
last_indexed 2024-03-01T14:08:25.993Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Phosphorothioated+DNA+Is+Shielded+from+Oxidative+Damage&rft.date=2019-04-15&genre=article&issn=1098-5336&volume=85&issue=8&jtitle=Applied+and+Environmental+Microbiology&atitle=Phosphorothioated+DNA+Is+Shielded+from+Oxidative+Damage&aulast=Wang&aufirst=Zhijun&rft_id=info%3Adoi%2F10.1128%2Faem.00104-19&rft.language%5B0%5D=eng
SOLR
_version_ 1792333166044774407
author Pu, Tianning, Liang, Jingdan, Mei, Zhiling, Yang, Yan, Wang, Jialiang, Zhang, Wei, Liang, Wei-Jun, Zhou, Xiufen, Deng, Zixin, Wang, Zhijun
author_facet Pu, Tianning, Liang, Jingdan, Mei, Zhiling, Yang, Yan, Wang, Jialiang, Zhang, Wei, Liang, Wei-Jun, Zhou, Xiufen, Deng, Zixin, Wang, Zhijun, Pu, Tianning, Liang, Jingdan, Mei, Zhiling, Yang, Yan, Wang, Jialiang, Zhang, Wei, Liang, Wei-Jun, Zhou, Xiufen, Deng, Zixin, Wang, Zhijun
author_sort pu, tianning
container_issue 8
container_start_page 0
container_title Applied and Environmental Microbiology
container_volume 85
description <jats:p> DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient <jats:named-content content-type="genus-species">E. coli</jats:named-content> Hpx <jats:sup>−</jats:sup> strain restores H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> damage. </jats:p>
doi_str_mv 10.1128/aem.00104-19
facet_avail Online, Free
finc_class_facet Geographie, Biologie, Technik, Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTEyOC9hZW0uMDAxMDQtMTk
imprint American Society for Microbiology, 2019
imprint_str_mv American Society for Microbiology, 2019
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 0099-2240, 1098-5336
issn_str_mv 0099-2240, 1098-5336
language English
last_indexed 2024-03-01T14:08:25.993Z
match_str pu2019phosphorothioateddnaisshieldedfromoxidativedamage
mega_collection American Society for Microbiology (CrossRef)
physical
publishDate 2019
publishDateSort 2019
publisher American Society for Microbiology
record_format ai
recordtype ai
series Applied and Environmental Microbiology
source_id 49
spelling Pu, Tianning Liang, Jingdan Mei, Zhiling Yang, Yan Wang, Jialiang Zhang, Wei Liang, Wei-Jun Zhou, Xiufen Deng, Zixin Wang, Zhijun 0099-2240 1098-5336 American Society for Microbiology Ecology Applied Microbiology and Biotechnology Food Science Biotechnology http://dx.doi.org/10.1128/aem.00104-19 <jats:p> DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient <jats:named-content content-type="genus-species">E. coli</jats:named-content> Hpx <jats:sup>−</jats:sup> strain restores H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> damage. </jats:p> Phosphorothioated DNA Is Shielded from Oxidative Damage Applied and Environmental Microbiology
spellingShingle Pu, Tianning, Liang, Jingdan, Mei, Zhiling, Yang, Yan, Wang, Jialiang, Zhang, Wei, Liang, Wei-Jun, Zhou, Xiufen, Deng, Zixin, Wang, Zhijun, Applied and Environmental Microbiology, Phosphorothioated DNA Is Shielded from Oxidative Damage, Ecology, Applied Microbiology and Biotechnology, Food Science, Biotechnology
title Phosphorothioated DNA Is Shielded from Oxidative Damage
title_full Phosphorothioated DNA Is Shielded from Oxidative Damage
title_fullStr Phosphorothioated DNA Is Shielded from Oxidative Damage
title_full_unstemmed Phosphorothioated DNA Is Shielded from Oxidative Damage
title_short Phosphorothioated DNA Is Shielded from Oxidative Damage
title_sort phosphorothioated dna is shielded from oxidative damage
title_unstemmed Phosphorothioated DNA Is Shielded from Oxidative Damage
topic Ecology, Applied Microbiology and Biotechnology, Food Science, Biotechnology
url http://dx.doi.org/10.1128/aem.00104-19