author_facet Gang, G. J.
Tward, D. J.
Lee, J.
Siewerdsen, J. H.
Gang, G. J.
Tward, D. J.
Lee, J.
Siewerdsen, J. H.
author Gang, G. J.
Tward, D. J.
Lee, J.
Siewerdsen, J. H.
spellingShingle Gang, G. J.
Tward, D. J.
Lee, J.
Siewerdsen, J. H.
Medical Physics
Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
General Medicine
author_sort gang, g. j.
spelling Gang, G. J. Tward, D. J. Lee, J. Siewerdsen, J. H. 0094-2405 2473-4209 Wiley General Medicine http://dx.doi.org/10.1118/1.3352586 <jats:sec><jats:title>Purpose:</jats:title><jats:p>Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone‐beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background “noise” in cascaded systems analysis of 2D and 3D imaging performance to yield “generalized” metrics of noise‐equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source‐detector orbit.</jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p>A physical phantom was designed based on principles of fractal self‐similarity to exhibit power‐law spectral density<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0001.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0001" /> comparable to various anatomical sites (e.g., breast and lung). Background power spectra <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0002.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0002" /> were computed as a function of source‐detector orbital extent, including tomosynthesis <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0003.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0003" /> and CBCT (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0004.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0004" /> to 360°) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0005.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0005" /> was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>The phantom yielded power‐law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0006.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0006" /> and correlation <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0007.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0007" /> with increasing tomosynthesis angle. Incorporation of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0008.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0008" /> in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design—applications varying significantly in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0009.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0009" /> and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0010.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0010" />, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low‐frequency tasks (e.g., soft‐tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high‐frequency tasks (e.g., microcalcifications) require careful, application‐specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.</jats:p></jats:sec> Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT Medical Physics
doi_str_mv 10.1118/1.3352586
facet_avail Online
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExOC8xLjMzNTI1ODY
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExOC8xLjMzNTI1ODY
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
imprint Wiley, 2010
imprint_str_mv Wiley, 2010
issn 0094-2405
2473-4209
issn_str_mv 0094-2405
2473-4209
language English
mega_collection Wiley (CrossRef)
match_str gang2010anatomicalbackgroundandgeneralizeddetectabilityintomosynthesisandconebeamct
publishDateSort 2010
publisher Wiley
recordtype ai
record_format ai
series Medical Physics
source_id 49
title Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_unstemmed Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_full Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_fullStr Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_full_unstemmed Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_short Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_sort anatomical background and generalized detectability in tomosynthesis and cone‐beam ct
topic General Medicine
url http://dx.doi.org/10.1118/1.3352586
publishDate 2010
physical 1948-1965
description <jats:sec><jats:title>Purpose:</jats:title><jats:p>Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone‐beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background “noise” in cascaded systems analysis of 2D and 3D imaging performance to yield “generalized” metrics of noise‐equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source‐detector orbit.</jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p>A physical phantom was designed based on principles of fractal self‐similarity to exhibit power‐law spectral density<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0001.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0001" /> comparable to various anatomical sites (e.g., breast and lung). Background power spectra <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0002.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0002" /> were computed as a function of source‐detector orbital extent, including tomosynthesis <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0003.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0003" /> and CBCT (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0004.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0004" /> to 360°) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0005.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0005" /> was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>The phantom yielded power‐law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0006.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0006" /> and correlation <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0007.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0007" /> with increasing tomosynthesis angle. Incorporation of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0008.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0008" /> in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design—applications varying significantly in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0009.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0009" /> and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0010.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0010" />, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low‐frequency tasks (e.g., soft‐tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high‐frequency tasks (e.g., microcalcifications) require careful, application‐specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.</jats:p></jats:sec>
container_issue 5
container_start_page 1948
container_title Medical Physics
container_volume 37
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792345446382829580
geogr_code not assigned
last_indexed 2024-03-01T17:23:13.273Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Anatomical+background+and+generalized+detectability+in+tomosynthesis+and+cone%E2%80%90beam+CT&rft.date=2010-05-01&genre=article&issn=2473-4209&volume=37&issue=5&spage=1948&epage=1965&pages=1948-1965&jtitle=Medical+Physics&atitle=Anatomical+background+and+generalized+detectability+in+tomosynthesis+and+cone%E2%80%90beam+CT&aulast=Siewerdsen&aufirst=J.+H.&rft_id=info%3Adoi%2F10.1118%2F1.3352586&rft.language%5B0%5D=eng
SOLR
_version_ 1792345446382829580
author Gang, G. J., Tward, D. J., Lee, J., Siewerdsen, J. H.
author_facet Gang, G. J., Tward, D. J., Lee, J., Siewerdsen, J. H., Gang, G. J., Tward, D. J., Lee, J., Siewerdsen, J. H.
author_sort gang, g. j.
container_issue 5
container_start_page 1948
container_title Medical Physics
container_volume 37
description <jats:sec><jats:title>Purpose:</jats:title><jats:p>Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone‐beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background “noise” in cascaded systems analysis of 2D and 3D imaging performance to yield “generalized” metrics of noise‐equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source‐detector orbit.</jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p>A physical phantom was designed based on principles of fractal self‐similarity to exhibit power‐law spectral density<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0001.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0001" /> comparable to various anatomical sites (e.g., breast and lung). Background power spectra <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0002.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0002" /> were computed as a function of source‐detector orbital extent, including tomosynthesis <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0003.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0003" /> and CBCT (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0004.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0004" /> to 360°) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0005.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0005" /> was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>The phantom yielded power‐law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0006.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0006" /> and correlation <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0007.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0007" /> with increasing tomosynthesis angle. Incorporation of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0008.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0008" /> in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design—applications varying significantly in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0009.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0009" /> and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0010.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0010" />, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low‐frequency tasks (e.g., soft‐tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high‐frequency tasks (e.g., microcalcifications) require careful, application‐specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.</jats:p></jats:sec>
doi_str_mv 10.1118/1.3352586
facet_avail Online
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExOC8xLjMzNTI1ODY
imprint Wiley, 2010
imprint_str_mv Wiley, 2010
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229
issn 0094-2405, 2473-4209
issn_str_mv 0094-2405, 2473-4209
language English
last_indexed 2024-03-01T17:23:13.273Z
match_str gang2010anatomicalbackgroundandgeneralizeddetectabilityintomosynthesisandconebeamct
mega_collection Wiley (CrossRef)
physical 1948-1965
publishDate 2010
publishDateSort 2010
publisher Wiley
record_format ai
recordtype ai
series Medical Physics
source_id 49
spelling Gang, G. J. Tward, D. J. Lee, J. Siewerdsen, J. H. 0094-2405 2473-4209 Wiley General Medicine http://dx.doi.org/10.1118/1.3352586 <jats:sec><jats:title>Purpose:</jats:title><jats:p>Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone‐beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background “noise” in cascaded systems analysis of 2D and 3D imaging performance to yield “generalized” metrics of noise‐equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source‐detector orbit.</jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p>A physical phantom was designed based on principles of fractal self‐similarity to exhibit power‐law spectral density<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0001.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0001" /> comparable to various anatomical sites (e.g., breast and lung). Background power spectra <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0002.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0002" /> were computed as a function of source‐detector orbital extent, including tomosynthesis <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0003.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0003" /> and CBCT (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0004.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0004" /> to 360°) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0005.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0005" /> was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>The phantom yielded power‐law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0006.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0006" /> and correlation <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0007.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0007" /> with increasing tomosynthesis angle. Incorporation of <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0008.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0008" /> in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design—applications varying significantly in <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0009.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0009" /> and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mp2586-math-0010.png" xlink:title="urn:x-wiley:00942405:media:mp2586:mp2586-math-0010" />, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low‐frequency tasks (e.g., soft‐tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high‐frequency tasks (e.g., microcalcifications) require careful, application‐specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.</jats:p></jats:sec> Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT Medical Physics
spellingShingle Gang, G. J., Tward, D. J., Lee, J., Siewerdsen, J. H., Medical Physics, Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT, General Medicine
title Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_full Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_fullStr Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_full_unstemmed Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_short Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
title_sort anatomical background and generalized detectability in tomosynthesis and cone‐beam ct
title_unstemmed Anatomical background and generalized detectability in tomosynthesis and cone‐beam CT
topic General Medicine
url http://dx.doi.org/10.1118/1.3352586