author_facet Li, Yan‐Fang
Wu, Long‐Jun
Li, Yong
Xu, Lin
Xu, Tian‐Le
Li, Yan‐Fang
Wu, Long‐Jun
Li, Yong
Xu, Lin
Xu, Tian‐Le
author Li, Yan‐Fang
Wu, Long‐Jun
Li, Yong
Xu, Lin
Xu, Tian‐Le
spellingShingle Li, Yan‐Fang
Wu, Long‐Jun
Li, Yong
Xu, Lin
Xu, Tian‐Le
The Journal of Physiology
Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
Physiology
author_sort li, yan‐fang
spelling Li, Yan‐Fang Wu, Long‐Jun Li, Yong Xu, Lin Xu, Tian‐Le 0022-3751 1469-7793 Wiley Physiology http://dx.doi.org/10.1113/jphysiol.2003.047324 <jats:p>Many ionotropic receptors are modulated by extracellular H<jats:sup>+</jats:sup>. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine‐evoked currents (<jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H<jats:sup>+</jats:sup> modulated both the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> biphasically, although it activated an amiloride‐sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, while increasing external pH reversibly potentiated these parameters. Blockade of acid‐sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H<jats:sup>+</jats:sup> on either mIPSCs or <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> shifted the EC<jats:sub>50</jats:sub> of the glycine concentration‐response curve from 49.3 ± 5.7 μ<jats:sc>m</jats:sc> at external pH 7.4 to 131.5 ± 8.1 μM at pH 5.5, without altering the Cl<jats:sup>−</jats:sup> selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, suggesting a competitive inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> by H<jats:sup>+</jats:sup>. Both Zn<jats:sup>2+</jats:sup> and H<jats:sup>+</jats:sup> inhibited <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. However, H<jats:sup>+</jats:sup> induced no further inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> in the presence of a saturating concentration of Zn<jats:sup>2+</jats:sup>. In addition, H<jats:sup>+</jats:sup> significantly affected the kinetics of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. It is proposed that H<jats:sup>+</jats:sup> and/or Zn<jats:sup>2+</jats:sup> compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. Moreover, binding of H<jats:sup>+</jats:sup> induces a global conformational change in GlyR, which closes the GlyR Cl<jats:sup>−</jats:sup> channel and results in the acceleration of the seeming desensitization of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> also modulated the glycine cotransmitter, GABA‐activated current (<jats:italic>I</jats:italic><jats:sub>GABA</jats:sub>). Taken together, the results support a ‘conformational coupling’ model for H<jats:sup>+</jats:sup> modulation of the GlyR and suggest that H<jats:sup>+</jats:sup> may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.</jats:p> Mechanisms of H<sup>+</sup> Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons The Journal of Physiology
doi_str_mv 10.1113/jphysiol.2003.047324
facet_avail Online
Free
finc_class_facet Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDAzLjA0NzMyNA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDAzLjA0NzMyNA
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Wiley, 2003
imprint_str_mv Wiley, 2003
issn 0022-3751
1469-7793
issn_str_mv 0022-3751
1469-7793
language English
mega_collection Wiley (CrossRef)
match_str li2003mechanismsofhmodulationofglycinergicresponseinratsacraldorsalcommissuralneurons
publishDateSort 2003
publisher Wiley
recordtype ai
record_format ai
series The Journal of Physiology
source_id 49
title Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_unstemmed Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_full Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_fullStr Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_full_unstemmed Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_short Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_sort mechanisms of h<sup>+</sup> modulation of glycinergic response in rat sacral dorsal commissural neurons
topic Physiology
url http://dx.doi.org/10.1113/jphysiol.2003.047324
publishDate 2003
physical 73-87
description <jats:p>Many ionotropic receptors are modulated by extracellular H<jats:sup>+</jats:sup>. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine‐evoked currents (<jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H<jats:sup>+</jats:sup> modulated both the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> biphasically, although it activated an amiloride‐sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, while increasing external pH reversibly potentiated these parameters. Blockade of acid‐sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H<jats:sup>+</jats:sup> on either mIPSCs or <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> shifted the EC<jats:sub>50</jats:sub> of the glycine concentration‐response curve from 49.3 ± 5.7 μ<jats:sc>m</jats:sc> at external pH 7.4 to 131.5 ± 8.1 μM at pH 5.5, without altering the Cl<jats:sup>−</jats:sup> selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, suggesting a competitive inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> by H<jats:sup>+</jats:sup>. Both Zn<jats:sup>2+</jats:sup> and H<jats:sup>+</jats:sup> inhibited <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. However, H<jats:sup>+</jats:sup> induced no further inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> in the presence of a saturating concentration of Zn<jats:sup>2+</jats:sup>. In addition, H<jats:sup>+</jats:sup> significantly affected the kinetics of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. It is proposed that H<jats:sup>+</jats:sup> and/or Zn<jats:sup>2+</jats:sup> compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. Moreover, binding of H<jats:sup>+</jats:sup> induces a global conformational change in GlyR, which closes the GlyR Cl<jats:sup>−</jats:sup> channel and results in the acceleration of the seeming desensitization of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> also modulated the glycine cotransmitter, GABA‐activated current (<jats:italic>I</jats:italic><jats:sub>GABA</jats:sub>). Taken together, the results support a ‘conformational coupling’ model for H<jats:sup>+</jats:sup> modulation of the GlyR and suggest that H<jats:sup>+</jats:sup> may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.</jats:p>
container_issue 1
container_start_page 73
container_title The Journal of Physiology
container_volume 552
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792335832337612805
geogr_code not assigned
last_indexed 2024-03-01T14:50:48.484Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Mechanisms+of+H%2B+Modulation+of+Glycinergic+Response+in+Rat+Sacral+Dorsal+Commissural+Neurons&rft.date=2003-10-01&genre=article&issn=1469-7793&volume=552&issue=1&spage=73&epage=87&pages=73-87&jtitle=The+Journal+of+Physiology&atitle=Mechanisms+of+H%3Csup%3E%2B%3C%2Fsup%3E+Modulation+of+Glycinergic+Response+in+Rat+Sacral+Dorsal+Commissural+Neurons&aulast=Xu&aufirst=Tian%E2%80%90Le&rft_id=info%3Adoi%2F10.1113%2Fjphysiol.2003.047324&rft.language%5B0%5D=eng
SOLR
_version_ 1792335832337612805
author Li, Yan‐Fang, Wu, Long‐Jun, Li, Yong, Xu, Lin, Xu, Tian‐Le
author_facet Li, Yan‐Fang, Wu, Long‐Jun, Li, Yong, Xu, Lin, Xu, Tian‐Le, Li, Yan‐Fang, Wu, Long‐Jun, Li, Yong, Xu, Lin, Xu, Tian‐Le
author_sort li, yan‐fang
container_issue 1
container_start_page 73
container_title The Journal of Physiology
container_volume 552
description <jats:p>Many ionotropic receptors are modulated by extracellular H<jats:sup>+</jats:sup>. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine‐evoked currents (<jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H<jats:sup>+</jats:sup> modulated both the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> biphasically, although it activated an amiloride‐sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, while increasing external pH reversibly potentiated these parameters. Blockade of acid‐sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H<jats:sup>+</jats:sup> on either mIPSCs or <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> shifted the EC<jats:sub>50</jats:sub> of the glycine concentration‐response curve from 49.3 ± 5.7 μ<jats:sc>m</jats:sc> at external pH 7.4 to 131.5 ± 8.1 μM at pH 5.5, without altering the Cl<jats:sup>−</jats:sup> selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, suggesting a competitive inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> by H<jats:sup>+</jats:sup>. Both Zn<jats:sup>2+</jats:sup> and H<jats:sup>+</jats:sup> inhibited <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. However, H<jats:sup>+</jats:sup> induced no further inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> in the presence of a saturating concentration of Zn<jats:sup>2+</jats:sup>. In addition, H<jats:sup>+</jats:sup> significantly affected the kinetics of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. It is proposed that H<jats:sup>+</jats:sup> and/or Zn<jats:sup>2+</jats:sup> compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. Moreover, binding of H<jats:sup>+</jats:sup> induces a global conformational change in GlyR, which closes the GlyR Cl<jats:sup>−</jats:sup> channel and results in the acceleration of the seeming desensitization of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> also modulated the glycine cotransmitter, GABA‐activated current (<jats:italic>I</jats:italic><jats:sub>GABA</jats:sub>). Taken together, the results support a ‘conformational coupling’ model for H<jats:sup>+</jats:sup> modulation of the GlyR and suggest that H<jats:sup>+</jats:sup> may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.</jats:p>
doi_str_mv 10.1113/jphysiol.2003.047324
facet_avail Online, Free
finc_class_facet Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDAzLjA0NzMyNA
imprint Wiley, 2003
imprint_str_mv Wiley, 2003
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 0022-3751, 1469-7793
issn_str_mv 0022-3751, 1469-7793
language English
last_indexed 2024-03-01T14:50:48.484Z
match_str li2003mechanismsofhmodulationofglycinergicresponseinratsacraldorsalcommissuralneurons
mega_collection Wiley (CrossRef)
physical 73-87
publishDate 2003
publishDateSort 2003
publisher Wiley
record_format ai
recordtype ai
series The Journal of Physiology
source_id 49
spelling Li, Yan‐Fang Wu, Long‐Jun Li, Yong Xu, Lin Xu, Tian‐Le 0022-3751 1469-7793 Wiley Physiology http://dx.doi.org/10.1113/jphysiol.2003.047324 <jats:p>Many ionotropic receptors are modulated by extracellular H<jats:sup>+</jats:sup>. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine‐evoked currents (<jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H<jats:sup>+</jats:sup> modulated both the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> biphasically, although it activated an amiloride‐sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, while increasing external pH reversibly potentiated these parameters. Blockade of acid‐sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H<jats:sup>+</jats:sup> on either mIPSCs or <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> shifted the EC<jats:sub>50</jats:sub> of the glycine concentration‐response curve from 49.3 ± 5.7 μ<jats:sc>m</jats:sc> at external pH 7.4 to 131.5 ± 8.1 μM at pH 5.5, without altering the Cl<jats:sup>−</jats:sup> selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>, suggesting a competitive inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> by H<jats:sup>+</jats:sup>. Both Zn<jats:sup>2+</jats:sup> and H<jats:sup>+</jats:sup> inhibited <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. However, H<jats:sup>+</jats:sup> induced no further inhibition of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> in the presence of a saturating concentration of Zn<jats:sup>2+</jats:sup>. In addition, H<jats:sup>+</jats:sup> significantly affected the kinetics of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. It is proposed that H<jats:sup>+</jats:sup> and/or Zn<jats:sup>2+</jats:sup> compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. Moreover, binding of H<jats:sup>+</jats:sup> induces a global conformational change in GlyR, which closes the GlyR Cl<jats:sup>−</jats:sup> channel and results in the acceleration of the seeming desensitization of <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub> as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound <jats:italic>I</jats:italic><jats:sub>Gly</jats:sub>. H<jats:sup>+</jats:sup> also modulated the glycine cotransmitter, GABA‐activated current (<jats:italic>I</jats:italic><jats:sub>GABA</jats:sub>). Taken together, the results support a ‘conformational coupling’ model for H<jats:sup>+</jats:sup> modulation of the GlyR and suggest that H<jats:sup>+</jats:sup> may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.</jats:p> Mechanisms of H<sup>+</sup> Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons The Journal of Physiology
spellingShingle Li, Yan‐Fang, Wu, Long‐Jun, Li, Yong, Xu, Lin, Xu, Tian‐Le, The Journal of Physiology, Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons, Physiology
title Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_full Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_fullStr Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_full_unstemmed Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_short Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
title_sort mechanisms of h<sup>+</sup> modulation of glycinergic response in rat sacral dorsal commissural neurons
title_unstemmed Mechanisms of H+ Modulation of Glycinergic Response in Rat Sacral Dorsal Commissural Neurons
topic Physiology
url http://dx.doi.org/10.1113/jphysiol.2003.047324