author_facet Fraser, James A.
Huang, Christopher L.‐H.
Fraser, James A.
Huang, Christopher L.‐H.
author Fraser, James A.
Huang, Christopher L.‐H.
spellingShingle Fraser, James A.
Huang, Christopher L.‐H.
The Journal of Physiology
A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
Physiology
author_sort fraser, james a.
spelling Fraser, James A. Huang, Christopher L.‐H. 0022-3751 1469-7793 Wiley Physiology http://dx.doi.org/10.1113/jphysiol.2004.065706 <jats:p>This paper quantifies recent experimental results through a general physical description of the mechanisms that might control two fundamental cellular parameters, resting potential (<jats:italic>E</jats:italic><jats:sub>m</jats:sub>) and cell volume (<jats:italic>V</jats:italic><jats:sub>c</jats:sub>), thereby clarifying the complex relationships between them. <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined directly from a charge difference (CD) equation involving total intracellular ionic charge and membrane capacitance (<jats:italic>C</jats:italic><jats:sub>m</jats:sub>). This avoided the equilibrium condition d<jats:italic>E</jats:italic><jats:sub>m</jats:sub>/d<jats:italic>t</jats:italic>= 0 required in determinations of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> by previous work based on the Goldman‐Hodgkin‐Katz equation and its derivatives and thus permitted precise calculation of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> even under non‐equilibrium conditions. It could accurately model the influence upon <jats:italic>E</jats:italic><jats:sub>m</jats:sub> of changes in <jats:italic>C</jats:italic><jats:sub>m</jats:sub> or <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and of membrane transport processes such as the Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase and ion cotransport. Given a stable and adequate membrane Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase density (<jats:italic>N</jats:italic>), <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> both converged to unique steady‐state values even from sharply divergent initial intracellular ionic concentrations. For any constant set of transmembrane ion permeabilities, this set point of <jats:italic>V</jats:italic><jats:sub>c</jats:sub> was then determined by the intracellular membrane‐impermeant solute content (X<jats:sup>−</jats:sup><jats:sub>i</jats:sub>) <jats:italic>and</jats:italic> its mean charge valency (<jats:italic>z</jats:italic><jats:sub>X</jats:sub>), while in contrast, the set point of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined <jats:italic>solely</jats:italic> by <jats:italic>z</jats:italic><jats:sub>X</jats:sub>. Independent changes in membrane Na<jats:sup>+</jats:sup> (<jats:italic>P</jats:italic><jats:sub>Na</jats:sub>) or K<jats:sup>+</jats:sup> permeabilities (<jats:italic>P</jats:italic><jats:sub>K</jats:sub>) or activation of cation–chloride cotransporters could perturb <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but subsequent reversal of such changes permitted full recovery of both <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> to the original set points. <jats:italic>Proportionate</jats:italic> changes in <jats:italic>P</jats:italic><jats:sub>Na</jats:sub>, <jats:italic>P</jats:italic><jats:sub>K</jats:sub> and <jats:italic>N</jats:italic>, or changes in Cl<jats:sup>−</jats:sup> permeability (<jats:italic>P</jats:italic><jats:sub>Cl</jats:sub>) instead conserved steady‐state <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but altered their <jats:italic>rates</jats:italic> of relaxation following any discrete perturbation. <jats:italic>P</jats:italic><jats:sub>Cl</jats:sub> additionally determined the relative effect of cotransporter activity on <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub>, in agreement with recent experimental results. In contrast, changes in X<jats:sub>i</jats:sub><jats:sup>−</jats:sup> produced by introduction of a finite permeability term to X<jats:sup>−</jats:sup> (<jats:italic>P</jats:italic><jats:sub>X</jats:sub>) that did not alter <jats:italic>z</jats:italic><jats:sub>X</jats:sub> caused sustained changes in <jats:italic>V</jats:italic><jats:sub>c</jats:sub> that were independent of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> and that persisted when <jats:italic>P</jats:italic><jats:sub>X</jats:sub> returned to zero. Where such fluxes also altered the effective <jats:italic>z</jats:italic><jats:sub>X</jats:sub> they additionally altered the steady state <jats:italic>E</jats:italic><jats:sub>m</jats:sub>. This offers a basis for the suggested roles of amino acid fluxes in long‐term volume regulatory processes in a variety of excitable tissues.</jats:p> A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells The Journal of Physiology
doi_str_mv 10.1113/jphysiol.2004.065706
facet_avail Online
Free
finc_class_facet Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDA0LjA2NTcwNg
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDA0LjA2NTcwNg
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Wiley, 2004
imprint_str_mv Wiley, 2004
issn 0022-3751
1469-7793
issn_str_mv 0022-3751
1469-7793
language English
mega_collection Wiley (CrossRef)
match_str fraser2004aquantitativeanalysisofcellvolumeandrestingpotentialdeterminationandregulationinexcitablecells
publishDateSort 2004
publisher Wiley
recordtype ai
record_format ai
series The Journal of Physiology
source_id 49
title A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_unstemmed A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_full A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_fullStr A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_full_unstemmed A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_short A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_sort a quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
topic Physiology
url http://dx.doi.org/10.1113/jphysiol.2004.065706
publishDate 2004
physical 459-478
description <jats:p>This paper quantifies recent experimental results through a general physical description of the mechanisms that might control two fundamental cellular parameters, resting potential (<jats:italic>E</jats:italic><jats:sub>m</jats:sub>) and cell volume (<jats:italic>V</jats:italic><jats:sub>c</jats:sub>), thereby clarifying the complex relationships between them. <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined directly from a charge difference (CD) equation involving total intracellular ionic charge and membrane capacitance (<jats:italic>C</jats:italic><jats:sub>m</jats:sub>). This avoided the equilibrium condition d<jats:italic>E</jats:italic><jats:sub>m</jats:sub>/d<jats:italic>t</jats:italic>= 0 required in determinations of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> by previous work based on the Goldman‐Hodgkin‐Katz equation and its derivatives and thus permitted precise calculation of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> even under non‐equilibrium conditions. It could accurately model the influence upon <jats:italic>E</jats:italic><jats:sub>m</jats:sub> of changes in <jats:italic>C</jats:italic><jats:sub>m</jats:sub> or <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and of membrane transport processes such as the Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase and ion cotransport. Given a stable and adequate membrane Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase density (<jats:italic>N</jats:italic>), <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> both converged to unique steady‐state values even from sharply divergent initial intracellular ionic concentrations. For any constant set of transmembrane ion permeabilities, this set point of <jats:italic>V</jats:italic><jats:sub>c</jats:sub> was then determined by the intracellular membrane‐impermeant solute content (X<jats:sup>−</jats:sup><jats:sub>i</jats:sub>) <jats:italic>and</jats:italic> its mean charge valency (<jats:italic>z</jats:italic><jats:sub>X</jats:sub>), while in contrast, the set point of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined <jats:italic>solely</jats:italic> by <jats:italic>z</jats:italic><jats:sub>X</jats:sub>. Independent changes in membrane Na<jats:sup>+</jats:sup> (<jats:italic>P</jats:italic><jats:sub>Na</jats:sub>) or K<jats:sup>+</jats:sup> permeabilities (<jats:italic>P</jats:italic><jats:sub>K</jats:sub>) or activation of cation–chloride cotransporters could perturb <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but subsequent reversal of such changes permitted full recovery of both <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> to the original set points. <jats:italic>Proportionate</jats:italic> changes in <jats:italic>P</jats:italic><jats:sub>Na</jats:sub>, <jats:italic>P</jats:italic><jats:sub>K</jats:sub> and <jats:italic>N</jats:italic>, or changes in Cl<jats:sup>−</jats:sup> permeability (<jats:italic>P</jats:italic><jats:sub>Cl</jats:sub>) instead conserved steady‐state <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but altered their <jats:italic>rates</jats:italic> of relaxation following any discrete perturbation. <jats:italic>P</jats:italic><jats:sub>Cl</jats:sub> additionally determined the relative effect of cotransporter activity on <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub>, in agreement with recent experimental results. In contrast, changes in X<jats:sub>i</jats:sub><jats:sup>−</jats:sup> produced by introduction of a finite permeability term to X<jats:sup>−</jats:sup> (<jats:italic>P</jats:italic><jats:sub>X</jats:sub>) that did not alter <jats:italic>z</jats:italic><jats:sub>X</jats:sub> caused sustained changes in <jats:italic>V</jats:italic><jats:sub>c</jats:sub> that were independent of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> and that persisted when <jats:italic>P</jats:italic><jats:sub>X</jats:sub> returned to zero. Where such fluxes also altered the effective <jats:italic>z</jats:italic><jats:sub>X</jats:sub> they additionally altered the steady state <jats:italic>E</jats:italic><jats:sub>m</jats:sub>. This offers a basis for the suggested roles of amino acid fluxes in long‐term volume regulatory processes in a variety of excitable tissues.</jats:p>
container_issue 2
container_start_page 459
container_title The Journal of Physiology
container_volume 559
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792341848779390985
geogr_code not assigned
last_indexed 2024-03-01T16:26:25.642Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=A+quantitative+analysis+of+cell+volume+and+resting+potential+determination+and+regulation+in+excitable+cells&rft.date=2004-09-01&genre=article&issn=1469-7793&volume=559&issue=2&spage=459&epage=478&pages=459-478&jtitle=The+Journal+of+Physiology&atitle=A+quantitative+analysis+of+cell+volume+and+resting+potential+determination+and+regulation+in+excitable+cells&aulast=Huang&aufirst=Christopher+L.%E2%80%90H.&rft_id=info%3Adoi%2F10.1113%2Fjphysiol.2004.065706&rft.language%5B0%5D=eng
SOLR
_version_ 1792341848779390985
author Fraser, James A., Huang, Christopher L.‐H.
author_facet Fraser, James A., Huang, Christopher L.‐H., Fraser, James A., Huang, Christopher L.‐H.
author_sort fraser, james a.
container_issue 2
container_start_page 459
container_title The Journal of Physiology
container_volume 559
description <jats:p>This paper quantifies recent experimental results through a general physical description of the mechanisms that might control two fundamental cellular parameters, resting potential (<jats:italic>E</jats:italic><jats:sub>m</jats:sub>) and cell volume (<jats:italic>V</jats:italic><jats:sub>c</jats:sub>), thereby clarifying the complex relationships between them. <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined directly from a charge difference (CD) equation involving total intracellular ionic charge and membrane capacitance (<jats:italic>C</jats:italic><jats:sub>m</jats:sub>). This avoided the equilibrium condition d<jats:italic>E</jats:italic><jats:sub>m</jats:sub>/d<jats:italic>t</jats:italic>= 0 required in determinations of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> by previous work based on the Goldman‐Hodgkin‐Katz equation and its derivatives and thus permitted precise calculation of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> even under non‐equilibrium conditions. It could accurately model the influence upon <jats:italic>E</jats:italic><jats:sub>m</jats:sub> of changes in <jats:italic>C</jats:italic><jats:sub>m</jats:sub> or <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and of membrane transport processes such as the Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase and ion cotransport. Given a stable and adequate membrane Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase density (<jats:italic>N</jats:italic>), <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> both converged to unique steady‐state values even from sharply divergent initial intracellular ionic concentrations. For any constant set of transmembrane ion permeabilities, this set point of <jats:italic>V</jats:italic><jats:sub>c</jats:sub> was then determined by the intracellular membrane‐impermeant solute content (X<jats:sup>−</jats:sup><jats:sub>i</jats:sub>) <jats:italic>and</jats:italic> its mean charge valency (<jats:italic>z</jats:italic><jats:sub>X</jats:sub>), while in contrast, the set point of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined <jats:italic>solely</jats:italic> by <jats:italic>z</jats:italic><jats:sub>X</jats:sub>. Independent changes in membrane Na<jats:sup>+</jats:sup> (<jats:italic>P</jats:italic><jats:sub>Na</jats:sub>) or K<jats:sup>+</jats:sup> permeabilities (<jats:italic>P</jats:italic><jats:sub>K</jats:sub>) or activation of cation–chloride cotransporters could perturb <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but subsequent reversal of such changes permitted full recovery of both <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> to the original set points. <jats:italic>Proportionate</jats:italic> changes in <jats:italic>P</jats:italic><jats:sub>Na</jats:sub>, <jats:italic>P</jats:italic><jats:sub>K</jats:sub> and <jats:italic>N</jats:italic>, or changes in Cl<jats:sup>−</jats:sup> permeability (<jats:italic>P</jats:italic><jats:sub>Cl</jats:sub>) instead conserved steady‐state <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but altered their <jats:italic>rates</jats:italic> of relaxation following any discrete perturbation. <jats:italic>P</jats:italic><jats:sub>Cl</jats:sub> additionally determined the relative effect of cotransporter activity on <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub>, in agreement with recent experimental results. In contrast, changes in X<jats:sub>i</jats:sub><jats:sup>−</jats:sup> produced by introduction of a finite permeability term to X<jats:sup>−</jats:sup> (<jats:italic>P</jats:italic><jats:sub>X</jats:sub>) that did not alter <jats:italic>z</jats:italic><jats:sub>X</jats:sub> caused sustained changes in <jats:italic>V</jats:italic><jats:sub>c</jats:sub> that were independent of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> and that persisted when <jats:italic>P</jats:italic><jats:sub>X</jats:sub> returned to zero. Where such fluxes also altered the effective <jats:italic>z</jats:italic><jats:sub>X</jats:sub> they additionally altered the steady state <jats:italic>E</jats:italic><jats:sub>m</jats:sub>. This offers a basis for the suggested roles of amino acid fluxes in long‐term volume regulatory processes in a variety of excitable tissues.</jats:p>
doi_str_mv 10.1113/jphysiol.2004.065706
facet_avail Online, Free
finc_class_facet Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMy9qcGh5c2lvbC4yMDA0LjA2NTcwNg
imprint Wiley, 2004
imprint_str_mv Wiley, 2004
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0022-3751, 1469-7793
issn_str_mv 0022-3751, 1469-7793
language English
last_indexed 2024-03-01T16:26:25.642Z
match_str fraser2004aquantitativeanalysisofcellvolumeandrestingpotentialdeterminationandregulationinexcitablecells
mega_collection Wiley (CrossRef)
physical 459-478
publishDate 2004
publishDateSort 2004
publisher Wiley
record_format ai
recordtype ai
series The Journal of Physiology
source_id 49
spelling Fraser, James A. Huang, Christopher L.‐H. 0022-3751 1469-7793 Wiley Physiology http://dx.doi.org/10.1113/jphysiol.2004.065706 <jats:p>This paper quantifies recent experimental results through a general physical description of the mechanisms that might control two fundamental cellular parameters, resting potential (<jats:italic>E</jats:italic><jats:sub>m</jats:sub>) and cell volume (<jats:italic>V</jats:italic><jats:sub>c</jats:sub>), thereby clarifying the complex relationships between them. <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined directly from a charge difference (CD) equation involving total intracellular ionic charge and membrane capacitance (<jats:italic>C</jats:italic><jats:sub>m</jats:sub>). This avoided the equilibrium condition d<jats:italic>E</jats:italic><jats:sub>m</jats:sub>/d<jats:italic>t</jats:italic>= 0 required in determinations of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> by previous work based on the Goldman‐Hodgkin‐Katz equation and its derivatives and thus permitted precise calculation of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> even under non‐equilibrium conditions. It could accurately model the influence upon <jats:italic>E</jats:italic><jats:sub>m</jats:sub> of changes in <jats:italic>C</jats:italic><jats:sub>m</jats:sub> or <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and of membrane transport processes such as the Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase and ion cotransport. Given a stable and adequate membrane Na<jats:sup>+</jats:sup>–K<jats:sup>+</jats:sup>‐ATPase density (<jats:italic>N</jats:italic>), <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> both converged to unique steady‐state values even from sharply divergent initial intracellular ionic concentrations. For any constant set of transmembrane ion permeabilities, this set point of <jats:italic>V</jats:italic><jats:sub>c</jats:sub> was then determined by the intracellular membrane‐impermeant solute content (X<jats:sup>−</jats:sup><jats:sub>i</jats:sub>) <jats:italic>and</jats:italic> its mean charge valency (<jats:italic>z</jats:italic><jats:sub>X</jats:sub>), while in contrast, the set point of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> was determined <jats:italic>solely</jats:italic> by <jats:italic>z</jats:italic><jats:sub>X</jats:sub>. Independent changes in membrane Na<jats:sup>+</jats:sup> (<jats:italic>P</jats:italic><jats:sub>Na</jats:sub>) or K<jats:sup>+</jats:sup> permeabilities (<jats:italic>P</jats:italic><jats:sub>K</jats:sub>) or activation of cation–chloride cotransporters could perturb <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but subsequent reversal of such changes permitted full recovery of both <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> to the original set points. <jats:italic>Proportionate</jats:italic> changes in <jats:italic>P</jats:italic><jats:sub>Na</jats:sub>, <jats:italic>P</jats:italic><jats:sub>K</jats:sub> and <jats:italic>N</jats:italic>, or changes in Cl<jats:sup>−</jats:sup> permeability (<jats:italic>P</jats:italic><jats:sub>Cl</jats:sub>) instead conserved steady‐state <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub> but altered their <jats:italic>rates</jats:italic> of relaxation following any discrete perturbation. <jats:italic>P</jats:italic><jats:sub>Cl</jats:sub> additionally determined the relative effect of cotransporter activity on <jats:italic>V</jats:italic><jats:sub>c</jats:sub> and <jats:italic>E</jats:italic><jats:sub>m</jats:sub>, in agreement with recent experimental results. In contrast, changes in X<jats:sub>i</jats:sub><jats:sup>−</jats:sup> produced by introduction of a finite permeability term to X<jats:sup>−</jats:sup> (<jats:italic>P</jats:italic><jats:sub>X</jats:sub>) that did not alter <jats:italic>z</jats:italic><jats:sub>X</jats:sub> caused sustained changes in <jats:italic>V</jats:italic><jats:sub>c</jats:sub> that were independent of <jats:italic>E</jats:italic><jats:sub>m</jats:sub> and that persisted when <jats:italic>P</jats:italic><jats:sub>X</jats:sub> returned to zero. Where such fluxes also altered the effective <jats:italic>z</jats:italic><jats:sub>X</jats:sub> they additionally altered the steady state <jats:italic>E</jats:italic><jats:sub>m</jats:sub>. This offers a basis for the suggested roles of amino acid fluxes in long‐term volume regulatory processes in a variety of excitable tissues.</jats:p> A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells The Journal of Physiology
spellingShingle Fraser, James A., Huang, Christopher L.‐H., The Journal of Physiology, A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells, Physiology
title A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_full A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_fullStr A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_full_unstemmed A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_short A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_sort a quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
title_unstemmed A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells
topic Physiology
url http://dx.doi.org/10.1113/jphysiol.2004.065706