author_facet Bauch, Jens-Dietrich
Nart, Enric
Stainsby, Hayden D.
Bauch, Jens-Dietrich
Nart, Enric
Stainsby, Hayden D.
author Bauch, Jens-Dietrich
Nart, Enric
Stainsby, Hayden D.
spellingShingle Bauch, Jens-Dietrich
Nart, Enric
Stainsby, Hayden D.
LMS Journal of Computation and Mathematics
Complexity of OM factorizations of polynomials over local fields
Computational Theory and Mathematics
General Mathematics
author_sort bauch, jens-dietrich
spelling Bauch, Jens-Dietrich Nart, Enric Stainsby, Hayden D. 1461-1570 Wiley Computational Theory and Mathematics General Mathematics http://dx.doi.org/10.1112/s1461157013000089 <jats:title>Abstract</jats:title><jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline1" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> be a locally compact complete field with respect to a discrete valuation <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline2" /><jats:tex-math>$v$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline3" /><jats:tex-math>$ \mathcal{O} $</jats:tex-math></jats:alternatives></jats:inline-formula> be the valuation ring, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline4" /><jats:tex-math>$\mathfrak{m}$</jats:tex-math></jats:alternatives></jats:inline-formula> the maximal ideal and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline5" /><jats:tex-math>$F(x)\in \mathcal{O} [x] $</jats:tex-math></jats:alternatives></jats:inline-formula> a monic separable polynomial of degree <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline6" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline7" /><jats:tex-math>$\delta = v(\mathrm{Disc} (F))$</jats:tex-math></jats:alternatives></jats:inline-formula>. The Montes algorithm computes an OM factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline8" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula>. The single-factor lifting algorithm derives from this data a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline9" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, for a prescribed precision <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline10" /><jats:tex-math>$\nu $</jats:tex-math></jats:alternatives></jats:inline-formula>. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline11" /><jats:tex-math>$O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$</jats:tex-math></jats:alternatives></jats:inline-formula> word operations for the complexity of the computation of a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline12" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, assuming that the residue field of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline13" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> is small.</jats:p> Complexity of OM factorizations of polynomials over local fields LMS Journal of Computation and Mathematics
doi_str_mv 10.1112/s1461157013000089
facet_avail Online
Free
finc_class_facet Mathematik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMi9zMTQ2MTE1NzAxMzAwMDA4OQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMi9zMTQ2MTE1NzAxMzAwMDA4OQ
institution DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
issn 1461-1570
issn_str_mv 1461-1570
language English
mega_collection Wiley (CrossRef)
match_str bauch2013complexityofomfactorizationsofpolynomialsoverlocalfields
publishDateSort 2013
publisher Wiley
recordtype ai
record_format ai
series LMS Journal of Computation and Mathematics
source_id 49
title Complexity of OM factorizations of polynomials over local fields
title_unstemmed Complexity of OM factorizations of polynomials over local fields
title_full Complexity of OM factorizations of polynomials over local fields
title_fullStr Complexity of OM factorizations of polynomials over local fields
title_full_unstemmed Complexity of OM factorizations of polynomials over local fields
title_short Complexity of OM factorizations of polynomials over local fields
title_sort complexity of om factorizations of polynomials over local fields
topic Computational Theory and Mathematics
General Mathematics
url http://dx.doi.org/10.1112/s1461157013000089
publishDate 2013
physical 139-171
description <jats:title>Abstract</jats:title><jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline1" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> be a locally compact complete field with respect to a discrete valuation <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline2" /><jats:tex-math>$v$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline3" /><jats:tex-math>$ \mathcal{O} $</jats:tex-math></jats:alternatives></jats:inline-formula> be the valuation ring, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline4" /><jats:tex-math>$\mathfrak{m}$</jats:tex-math></jats:alternatives></jats:inline-formula> the maximal ideal and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline5" /><jats:tex-math>$F(x)\in \mathcal{O} [x] $</jats:tex-math></jats:alternatives></jats:inline-formula> a monic separable polynomial of degree <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline6" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline7" /><jats:tex-math>$\delta = v(\mathrm{Disc} (F))$</jats:tex-math></jats:alternatives></jats:inline-formula>. The Montes algorithm computes an OM factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline8" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula>. The single-factor lifting algorithm derives from this data a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline9" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, for a prescribed precision <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline10" /><jats:tex-math>$\nu $</jats:tex-math></jats:alternatives></jats:inline-formula>. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline11" /><jats:tex-math>$O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$</jats:tex-math></jats:alternatives></jats:inline-formula> word operations for the complexity of the computation of a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline12" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, assuming that the residue field of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline13" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> is small.</jats:p>
container_start_page 139
container_title LMS Journal of Computation and Mathematics
container_volume 16
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792331643738914822
geogr_code not assigned
last_indexed 2024-03-01T13:42:35.735Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Complexity+of+OM+factorizations+of+polynomials+over+local+fields&rft.date=2013-01-01&genre=article&issn=1461-1570&volume=16&spage=139&epage=171&pages=139-171&jtitle=LMS+Journal+of+Computation+and+Mathematics&atitle=Complexity+of+OM+factorizations+of+polynomials+over+local+fields&aulast=Stainsby&aufirst=Hayden+D.&rft_id=info%3Adoi%2F10.1112%2Fs1461157013000089&rft.language%5B0%5D=eng
SOLR
_version_ 1792331643738914822
author Bauch, Jens-Dietrich, Nart, Enric, Stainsby, Hayden D.
author_facet Bauch, Jens-Dietrich, Nart, Enric, Stainsby, Hayden D., Bauch, Jens-Dietrich, Nart, Enric, Stainsby, Hayden D.
author_sort bauch, jens-dietrich
container_start_page 139
container_title LMS Journal of Computation and Mathematics
container_volume 16
description <jats:title>Abstract</jats:title><jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline1" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> be a locally compact complete field with respect to a discrete valuation <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline2" /><jats:tex-math>$v$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline3" /><jats:tex-math>$ \mathcal{O} $</jats:tex-math></jats:alternatives></jats:inline-formula> be the valuation ring, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline4" /><jats:tex-math>$\mathfrak{m}$</jats:tex-math></jats:alternatives></jats:inline-formula> the maximal ideal and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline5" /><jats:tex-math>$F(x)\in \mathcal{O} [x] $</jats:tex-math></jats:alternatives></jats:inline-formula> a monic separable polynomial of degree <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline6" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline7" /><jats:tex-math>$\delta = v(\mathrm{Disc} (F))$</jats:tex-math></jats:alternatives></jats:inline-formula>. The Montes algorithm computes an OM factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline8" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula>. The single-factor lifting algorithm derives from this data a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline9" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, for a prescribed precision <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline10" /><jats:tex-math>$\nu $</jats:tex-math></jats:alternatives></jats:inline-formula>. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline11" /><jats:tex-math>$O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$</jats:tex-math></jats:alternatives></jats:inline-formula> word operations for the complexity of the computation of a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline12" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, assuming that the residue field of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline13" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> is small.</jats:p>
doi_str_mv 10.1112/s1461157013000089
facet_avail Online, Free
finc_class_facet Mathematik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMi9zMTQ2MTE1NzAxMzAwMDA4OQ
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
institution DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275
issn 1461-1570
issn_str_mv 1461-1570
language English
last_indexed 2024-03-01T13:42:35.735Z
match_str bauch2013complexityofomfactorizationsofpolynomialsoverlocalfields
mega_collection Wiley (CrossRef)
physical 139-171
publishDate 2013
publishDateSort 2013
publisher Wiley
record_format ai
recordtype ai
series LMS Journal of Computation and Mathematics
source_id 49
spelling Bauch, Jens-Dietrich Nart, Enric Stainsby, Hayden D. 1461-1570 Wiley Computational Theory and Mathematics General Mathematics http://dx.doi.org/10.1112/s1461157013000089 <jats:title>Abstract</jats:title><jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline1" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> be a locally compact complete field with respect to a discrete valuation <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline2" /><jats:tex-math>$v$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline3" /><jats:tex-math>$ \mathcal{O} $</jats:tex-math></jats:alternatives></jats:inline-formula> be the valuation ring, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline4" /><jats:tex-math>$\mathfrak{m}$</jats:tex-math></jats:alternatives></jats:inline-formula> the maximal ideal and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline5" /><jats:tex-math>$F(x)\in \mathcal{O} [x] $</jats:tex-math></jats:alternatives></jats:inline-formula> a monic separable polynomial of degree <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline6" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline7" /><jats:tex-math>$\delta = v(\mathrm{Disc} (F))$</jats:tex-math></jats:alternatives></jats:inline-formula>. The Montes algorithm computes an OM factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline8" /><jats:tex-math>$F$</jats:tex-math></jats:alternatives></jats:inline-formula>. The single-factor lifting algorithm derives from this data a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline9" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, for a prescribed precision <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline10" /><jats:tex-math>$\nu $</jats:tex-math></jats:alternatives></jats:inline-formula>. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline11" /><jats:tex-math>$O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$</jats:tex-math></jats:alternatives></jats:inline-formula> word operations for the complexity of the computation of a factorization of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline12" /><jats:tex-math>$F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$</jats:tex-math></jats:alternatives></jats:inline-formula>, assuming that the residue field of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S1461157013000089_inline13" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula> is small.</jats:p> Complexity of OM factorizations of polynomials over local fields LMS Journal of Computation and Mathematics
spellingShingle Bauch, Jens-Dietrich, Nart, Enric, Stainsby, Hayden D., LMS Journal of Computation and Mathematics, Complexity of OM factorizations of polynomials over local fields, Computational Theory and Mathematics, General Mathematics
title Complexity of OM factorizations of polynomials over local fields
title_full Complexity of OM factorizations of polynomials over local fields
title_fullStr Complexity of OM factorizations of polynomials over local fields
title_full_unstemmed Complexity of OM factorizations of polynomials over local fields
title_short Complexity of OM factorizations of polynomials over local fields
title_sort complexity of om factorizations of polynomials over local fields
title_unstemmed Complexity of OM factorizations of polynomials over local fields
topic Computational Theory and Mathematics, General Mathematics
url http://dx.doi.org/10.1112/s1461157013000089