author_facet Dai, Zhengyan
Tan, Jiang
Zhou, Cong
Yang, Xiaofang
Yang, Fang
Zhang, Shijuan
Sun, Shichen
Miao, Xuexia
Shi, Zhenying
Dai, Zhengyan
Tan, Jiang
Zhou, Cong
Yang, Xiaofang
Yang, Fang
Zhang, Shijuan
Sun, Shichen
Miao, Xuexia
Shi, Zhenying
author Dai, Zhengyan
Tan, Jiang
Zhou, Cong
Yang, Xiaofang
Yang, Fang
Zhang, Shijuan
Sun, Shichen
Miao, Xuexia
Shi, Zhenying
spellingShingle Dai, Zhengyan
Tan, Jiang
Zhou, Cong
Yang, Xiaofang
Yang, Fang
Zhang, Shijuan
Sun, Shichen
Miao, Xuexia
Shi, Zhenying
Plant Biotechnology Journal
The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
Plant Science
Agronomy and Crop Science
Biotechnology
author_sort dai, zhengyan
spelling Dai, Zhengyan Tan, Jiang Zhou, Cong Yang, Xiaofang Yang, Fang Zhang, Shijuan Sun, Shichen Miao, Xuexia Shi, Zhenying 1467-7644 1467-7652 Wiley Plant Science Agronomy and Crop Science Biotechnology http://dx.doi.org/10.1111/pbi.13091 <jats:title>Summary</jats:title><jats:p>Multi‐functional micro<jats:styled-content style="fixed-case">RNA</jats:styled-content>s (mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s) are emerging as key modulators of plant–pathogen interactions. Although the involvement of some mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in plant–insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (<jats:styled-content style="fixed-case">BPH</jats:styled-content>) is the most notorious rice (<jats:italic>Oryza sativa</jats:italic>)‐specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s involved in rice–<jats:styled-content style="fixed-case">BPH</jats:styled-content> interactions, we performed mi<jats:styled-content style="fixed-case">RNA</jats:styled-content> sequencing and identified <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (<jats:styled-content style="fixed-case">MIM</jats:styled-content>396) in three genetic backgrounds indicated that OsmiR396 negatively regulated <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Overexpression of one <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive target gene of OsmiR396, growth regulating factor 8 (<jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic>), showed resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. Furthermore, the flavonoid contents increased in both the OsmiR396‐sequestered and the <jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic> overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Artificial applications of flavonoids to wild type (<jats:styled-content style="fixed-case">WT</jats:styled-content>) plants also increased resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. A <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive flavanone 3‐hydroxylase (<jats:italic>OsF3H</jats:italic>) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8. A genetic functional analysis of <jats:italic>OsF3H</jats:italic> revealed its positive role in mediating both the flavonoid contents and <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. And analysis of the genetic correlation between OsmiR396 and <jats:italic>OsF3H</jats:italic> showed that down‐regulation of <jats:italic>OsF3H</jats:italic> complemented the <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance characteristic and simultaneously decreased the flavonoid contents of the <jats:styled-content style="fixed-case">MIM</jats:styled-content>396 plants. Thus, we revealed a new <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance mechanism mediated by the OsmiR396–Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8–OsF3H–flavonoid pathway. Our study suggests potential applications of mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance breeding.</jats:p> The OsmiR396–Os<scp>GRF</scp>8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (<i>Oryza sativa</i>) Plant Biotechnology Journal
doi_str_mv 10.1111/pbi.13091
facet_avail Online
Free
finc_class_facet Biologie
Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTMwOTE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTMwOTE
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Wiley, 2019
imprint_str_mv Wiley, 2019
issn 1467-7644
1467-7652
issn_str_mv 1467-7644
1467-7652
language English
mega_collection Wiley (CrossRef)
match_str dai2019theosmir396osgrf8osf3hflavonoidpathwaymediatesresistancetothebrownplanthopperinriceoryzasativa
publishDateSort 2019
publisher Wiley
recordtype ai
record_format ai
series Plant Biotechnology Journal
source_id 49
title The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_unstemmed The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_full The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_fullStr The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_full_unstemmed The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_short The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_sort the osmir396–os<scp>grf</scp>8–osf3h‐flavonoid pathway mediates resistance to the brown planthopper in rice (<i>oryza sativa</i>)
topic Plant Science
Agronomy and Crop Science
Biotechnology
url http://dx.doi.org/10.1111/pbi.13091
publishDate 2019
physical 1657-1669
description <jats:title>Summary</jats:title><jats:p>Multi‐functional micro<jats:styled-content style="fixed-case">RNA</jats:styled-content>s (mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s) are emerging as key modulators of plant–pathogen interactions. Although the involvement of some mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in plant–insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (<jats:styled-content style="fixed-case">BPH</jats:styled-content>) is the most notorious rice (<jats:italic>Oryza sativa</jats:italic>)‐specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s involved in rice–<jats:styled-content style="fixed-case">BPH</jats:styled-content> interactions, we performed mi<jats:styled-content style="fixed-case">RNA</jats:styled-content> sequencing and identified <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (<jats:styled-content style="fixed-case">MIM</jats:styled-content>396) in three genetic backgrounds indicated that OsmiR396 negatively regulated <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Overexpression of one <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive target gene of OsmiR396, growth regulating factor 8 (<jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic>), showed resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. Furthermore, the flavonoid contents increased in both the OsmiR396‐sequestered and the <jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic> overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Artificial applications of flavonoids to wild type (<jats:styled-content style="fixed-case">WT</jats:styled-content>) plants also increased resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. A <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive flavanone 3‐hydroxylase (<jats:italic>OsF3H</jats:italic>) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8. A genetic functional analysis of <jats:italic>OsF3H</jats:italic> revealed its positive role in mediating both the flavonoid contents and <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. And analysis of the genetic correlation between OsmiR396 and <jats:italic>OsF3H</jats:italic> showed that down‐regulation of <jats:italic>OsF3H</jats:italic> complemented the <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance characteristic and simultaneously decreased the flavonoid contents of the <jats:styled-content style="fixed-case">MIM</jats:styled-content>396 plants. Thus, we revealed a new <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance mechanism mediated by the OsmiR396–Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8–OsF3H–flavonoid pathway. Our study suggests potential applications of mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance breeding.</jats:p>
container_issue 8
container_start_page 1657
container_title Plant Biotechnology Journal
container_volume 17
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346796081545222
geogr_code not assigned
last_indexed 2024-03-01T17:45:03.125Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=The+OsmiR396%E2%80%93OsGRF8%E2%80%93OsF3H%E2%80%90flavonoid+pathway+mediates+resistance+to+the+brown+planthopper+in+rice+%28Oryza+sativa%29&rft.date=2019-08-01&genre=article&issn=1467-7652&volume=17&issue=8&spage=1657&epage=1669&pages=1657-1669&jtitle=Plant+Biotechnology+Journal&atitle=The+OsmiR396%E2%80%93Os%3Cscp%3EGRF%3C%2Fscp%3E8%E2%80%93OsF3H%E2%80%90flavonoid+pathway+mediates+resistance+to+the+brown+planthopper+in+rice+%28%3Ci%3EOryza+sativa%3C%2Fi%3E%29&aulast=Shi&aufirst=Zhenying&rft_id=info%3Adoi%2F10.1111%2Fpbi.13091&rft.language%5B0%5D=eng
SOLR
_version_ 1792346796081545222
author Dai, Zhengyan, Tan, Jiang, Zhou, Cong, Yang, Xiaofang, Yang, Fang, Zhang, Shijuan, Sun, Shichen, Miao, Xuexia, Shi, Zhenying
author_facet Dai, Zhengyan, Tan, Jiang, Zhou, Cong, Yang, Xiaofang, Yang, Fang, Zhang, Shijuan, Sun, Shichen, Miao, Xuexia, Shi, Zhenying, Dai, Zhengyan, Tan, Jiang, Zhou, Cong, Yang, Xiaofang, Yang, Fang, Zhang, Shijuan, Sun, Shichen, Miao, Xuexia, Shi, Zhenying
author_sort dai, zhengyan
container_issue 8
container_start_page 1657
container_title Plant Biotechnology Journal
container_volume 17
description <jats:title>Summary</jats:title><jats:p>Multi‐functional micro<jats:styled-content style="fixed-case">RNA</jats:styled-content>s (mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s) are emerging as key modulators of plant–pathogen interactions. Although the involvement of some mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in plant–insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (<jats:styled-content style="fixed-case">BPH</jats:styled-content>) is the most notorious rice (<jats:italic>Oryza sativa</jats:italic>)‐specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s involved in rice–<jats:styled-content style="fixed-case">BPH</jats:styled-content> interactions, we performed mi<jats:styled-content style="fixed-case">RNA</jats:styled-content> sequencing and identified <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (<jats:styled-content style="fixed-case">MIM</jats:styled-content>396) in three genetic backgrounds indicated that OsmiR396 negatively regulated <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Overexpression of one <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive target gene of OsmiR396, growth regulating factor 8 (<jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic>), showed resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. Furthermore, the flavonoid contents increased in both the OsmiR396‐sequestered and the <jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic> overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Artificial applications of flavonoids to wild type (<jats:styled-content style="fixed-case">WT</jats:styled-content>) plants also increased resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. A <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive flavanone 3‐hydroxylase (<jats:italic>OsF3H</jats:italic>) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8. A genetic functional analysis of <jats:italic>OsF3H</jats:italic> revealed its positive role in mediating both the flavonoid contents and <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. And analysis of the genetic correlation between OsmiR396 and <jats:italic>OsF3H</jats:italic> showed that down‐regulation of <jats:italic>OsF3H</jats:italic> complemented the <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance characteristic and simultaneously decreased the flavonoid contents of the <jats:styled-content style="fixed-case">MIM</jats:styled-content>396 plants. Thus, we revealed a new <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance mechanism mediated by the OsmiR396–Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8–OsF3H–flavonoid pathway. Our study suggests potential applications of mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance breeding.</jats:p>
doi_str_mv 10.1111/pbi.13091
facet_avail Online, Free
finc_class_facet Biologie, Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTMwOTE
imprint Wiley, 2019
imprint_str_mv Wiley, 2019
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 1467-7644, 1467-7652
issn_str_mv 1467-7644, 1467-7652
language English
last_indexed 2024-03-01T17:45:03.125Z
match_str dai2019theosmir396osgrf8osf3hflavonoidpathwaymediatesresistancetothebrownplanthopperinriceoryzasativa
mega_collection Wiley (CrossRef)
physical 1657-1669
publishDate 2019
publishDateSort 2019
publisher Wiley
record_format ai
recordtype ai
series Plant Biotechnology Journal
source_id 49
spelling Dai, Zhengyan Tan, Jiang Zhou, Cong Yang, Xiaofang Yang, Fang Zhang, Shijuan Sun, Shichen Miao, Xuexia Shi, Zhenying 1467-7644 1467-7652 Wiley Plant Science Agronomy and Crop Science Biotechnology http://dx.doi.org/10.1111/pbi.13091 <jats:title>Summary</jats:title><jats:p>Multi‐functional micro<jats:styled-content style="fixed-case">RNA</jats:styled-content>s (mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s) are emerging as key modulators of plant–pathogen interactions. Although the involvement of some mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in plant–insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (<jats:styled-content style="fixed-case">BPH</jats:styled-content>) is the most notorious rice (<jats:italic>Oryza sativa</jats:italic>)‐specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s involved in rice–<jats:styled-content style="fixed-case">BPH</jats:styled-content> interactions, we performed mi<jats:styled-content style="fixed-case">RNA</jats:styled-content> sequencing and identified <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (<jats:styled-content style="fixed-case">MIM</jats:styled-content>396) in three genetic backgrounds indicated that OsmiR396 negatively regulated <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Overexpression of one <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive target gene of OsmiR396, growth regulating factor 8 (<jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic>), showed resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. Furthermore, the flavonoid contents increased in both the OsmiR396‐sequestered and the <jats:italic>Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8</jats:italic> overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. Artificial applications of flavonoids to wild type (<jats:styled-content style="fixed-case">WT</jats:styled-content>) plants also increased resistance to <jats:styled-content style="fixed-case">BPH</jats:styled-content>. A <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐responsive flavanone 3‐hydroxylase (<jats:italic>OsF3H</jats:italic>) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8. A genetic functional analysis of <jats:italic>OsF3H</jats:italic> revealed its positive role in mediating both the flavonoid contents and <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance. And analysis of the genetic correlation between OsmiR396 and <jats:italic>OsF3H</jats:italic> showed that down‐regulation of <jats:italic>OsF3H</jats:italic> complemented the <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance characteristic and simultaneously decreased the flavonoid contents of the <jats:styled-content style="fixed-case">MIM</jats:styled-content>396 plants. Thus, we revealed a new <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance mechanism mediated by the OsmiR396–Os<jats:styled-content style="fixed-case">GRF</jats:styled-content>8–OsF3H–flavonoid pathway. Our study suggests potential applications of mi<jats:styled-content style="fixed-case">RNA</jats:styled-content>s in <jats:styled-content style="fixed-case">BPH</jats:styled-content> resistance breeding.</jats:p> The OsmiR396–Os<scp>GRF</scp>8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (<i>Oryza sativa</i>) Plant Biotechnology Journal
spellingShingle Dai, Zhengyan, Tan, Jiang, Zhou, Cong, Yang, Xiaofang, Yang, Fang, Zhang, Shijuan, Sun, Shichen, Miao, Xuexia, Shi, Zhenying, Plant Biotechnology Journal, The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa), Plant Science, Agronomy and Crop Science, Biotechnology
title The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_full The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_fullStr The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_full_unstemmed The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_short The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
title_sort the osmir396–os<scp>grf</scp>8–osf3h‐flavonoid pathway mediates resistance to the brown planthopper in rice (<i>oryza sativa</i>)
title_unstemmed The OsmiR396–OsGRF8–OsF3H‐flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)
topic Plant Science, Agronomy and Crop Science, Biotechnology
url http://dx.doi.org/10.1111/pbi.13091