author_facet Liu, Caixiang
Du, Ba
Hao, Fuhua
Lei, Hehua
Wan, Qianfen
He, Guangcun
Wang, Yulan
Tang, Huiru
Liu, Caixiang
Du, Ba
Hao, Fuhua
Lei, Hehua
Wan, Qianfen
He, Guangcun
Wang, Yulan
Tang, Huiru
author Liu, Caixiang
Du, Ba
Hao, Fuhua
Lei, Hehua
Wan, Qianfen
He, Guangcun
Wang, Yulan
Tang, Huiru
spellingShingle Liu, Caixiang
Du, Ba
Hao, Fuhua
Lei, Hehua
Wan, Qianfen
He, Guangcun
Wang, Yulan
Tang, Huiru
Plant Biotechnology Journal
Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
Plant Science
Agronomy and Crop Science
Biotechnology
author_sort liu, caixiang
spelling Liu, Caixiang Du, Ba Hao, Fuhua Lei, Hehua Wan, Qianfen He, Guangcun Wang, Yulan Tang, Huiru 1467-7644 1467-7652 Wiley Plant Science Agronomy and Crop Science Biotechnology http://dx.doi.org/10.1111/pbi.12721 <jats:title>Summary</jats:title><jats:p>Brown planthopper (<jats:italic>Nilaparvata lugens</jats:italic> Stål, <jats:styled-content style="fixed-case">BPH</jats:styled-content>) causes huge economic losses in rice‐growing regions, and new strategies for combating <jats:styled-content style="fixed-case">BPH</jats:styled-content> are required. To understand how <jats:styled-content style="fixed-case">BPH</jats:styled-content>s respond towards <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐resistant plants, we systematically analysed the metabolic differences between <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant and susceptible plants using <jats:styled-content style="fixed-case">NMR</jats:styled-content> and <jats:styled-content style="fixed-case">GC</jats:styled-content>‐<jats:styled-content style="fixed-case">FID</jats:styled-content>/<jats:styled-content style="fixed-case">MS</jats:styled-content>. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time <jats:styled-content style="fixed-case">PCR</jats:styled-content>. <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates. After initial 12 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the susceptible plants. Decreased levels of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the early feeding probably resulted from less <jats:styled-content style="fixed-case">BPH</jats:styled-content> uptakes of sap from resistant plants and recovery of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in <jats:styled-content style="fixed-case">BPH</jats:styled-content>s. Throughout 96 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the <jats:styled-content style="fixed-case">BPH</jats:styled-content>–rice interactions and perhaps for developing new <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐combating strategies.</jats:p> Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants Plant Biotechnology Journal
doi_str_mv 10.1111/pbi.12721
facet_avail Online
Free
finc_class_facet Biologie
Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTI3MjE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTI3MjE
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Wiley, 2017
imprint_str_mv Wiley, 2017
issn 1467-7644
1467-7652
issn_str_mv 1467-7644
1467-7652
language English
mega_collection Wiley (CrossRef)
match_str liu2017dynamicmetabolicresponsesofbrownplanthopperstowardssusceptibleandresistantriceplants
publishDateSort 2017
publisher Wiley
recordtype ai
record_format ai
series Plant Biotechnology Journal
source_id 49
title Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_unstemmed Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_full Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_fullStr Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_full_unstemmed Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_short Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_sort dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
topic Plant Science
Agronomy and Crop Science
Biotechnology
url http://dx.doi.org/10.1111/pbi.12721
publishDate 2017
physical 1346-1357
description <jats:title>Summary</jats:title><jats:p>Brown planthopper (<jats:italic>Nilaparvata lugens</jats:italic> Stål, <jats:styled-content style="fixed-case">BPH</jats:styled-content>) causes huge economic losses in rice‐growing regions, and new strategies for combating <jats:styled-content style="fixed-case">BPH</jats:styled-content> are required. To understand how <jats:styled-content style="fixed-case">BPH</jats:styled-content>s respond towards <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐resistant plants, we systematically analysed the metabolic differences between <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant and susceptible plants using <jats:styled-content style="fixed-case">NMR</jats:styled-content> and <jats:styled-content style="fixed-case">GC</jats:styled-content>‐<jats:styled-content style="fixed-case">FID</jats:styled-content>/<jats:styled-content style="fixed-case">MS</jats:styled-content>. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time <jats:styled-content style="fixed-case">PCR</jats:styled-content>. <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates. After initial 12 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the susceptible plants. Decreased levels of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the early feeding probably resulted from less <jats:styled-content style="fixed-case">BPH</jats:styled-content> uptakes of sap from resistant plants and recovery of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in <jats:styled-content style="fixed-case">BPH</jats:styled-content>s. Throughout 96 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the <jats:styled-content style="fixed-case">BPH</jats:styled-content>–rice interactions and perhaps for developing new <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐combating strategies.</jats:p>
container_issue 10
container_start_page 1346
container_title Plant Biotechnology Journal
container_volume 15
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792347903380946947
geogr_code not assigned
last_indexed 2024-03-01T18:01:50.218Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Dynamic+metabolic+responses+of+brown+planthoppers+towards+susceptible+and+resistant+rice+plants&rft.date=2017-10-01&genre=article&issn=1467-7652&volume=15&issue=10&spage=1346&epage=1357&pages=1346-1357&jtitle=Plant+Biotechnology+Journal&atitle=Dynamic+metabolic+responses+of+brown+planthoppers+towards+susceptible+and+resistant+rice+plants&aulast=Tang&aufirst=Huiru&rft_id=info%3Adoi%2F10.1111%2Fpbi.12721&rft.language%5B0%5D=eng
SOLR
_version_ 1792347903380946947
author Liu, Caixiang, Du, Ba, Hao, Fuhua, Lei, Hehua, Wan, Qianfen, He, Guangcun, Wang, Yulan, Tang, Huiru
author_facet Liu, Caixiang, Du, Ba, Hao, Fuhua, Lei, Hehua, Wan, Qianfen, He, Guangcun, Wang, Yulan, Tang, Huiru, Liu, Caixiang, Du, Ba, Hao, Fuhua, Lei, Hehua, Wan, Qianfen, He, Guangcun, Wang, Yulan, Tang, Huiru
author_sort liu, caixiang
container_issue 10
container_start_page 1346
container_title Plant Biotechnology Journal
container_volume 15
description <jats:title>Summary</jats:title><jats:p>Brown planthopper (<jats:italic>Nilaparvata lugens</jats:italic> Stål, <jats:styled-content style="fixed-case">BPH</jats:styled-content>) causes huge economic losses in rice‐growing regions, and new strategies for combating <jats:styled-content style="fixed-case">BPH</jats:styled-content> are required. To understand how <jats:styled-content style="fixed-case">BPH</jats:styled-content>s respond towards <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐resistant plants, we systematically analysed the metabolic differences between <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant and susceptible plants using <jats:styled-content style="fixed-case">NMR</jats:styled-content> and <jats:styled-content style="fixed-case">GC</jats:styled-content>‐<jats:styled-content style="fixed-case">FID</jats:styled-content>/<jats:styled-content style="fixed-case">MS</jats:styled-content>. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time <jats:styled-content style="fixed-case">PCR</jats:styled-content>. <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates. After initial 12 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the susceptible plants. Decreased levels of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the early feeding probably resulted from less <jats:styled-content style="fixed-case">BPH</jats:styled-content> uptakes of sap from resistant plants and recovery of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in <jats:styled-content style="fixed-case">BPH</jats:styled-content>s. Throughout 96 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the <jats:styled-content style="fixed-case">BPH</jats:styled-content>–rice interactions and perhaps for developing new <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐combating strategies.</jats:p>
doi_str_mv 10.1111/pbi.12721
facet_avail Online, Free
finc_class_facet Biologie, Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9wYmkuMTI3MjE
imprint Wiley, 2017
imprint_str_mv Wiley, 2017
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 1467-7644, 1467-7652
issn_str_mv 1467-7644, 1467-7652
language English
last_indexed 2024-03-01T18:01:50.218Z
match_str liu2017dynamicmetabolicresponsesofbrownplanthopperstowardssusceptibleandresistantriceplants
mega_collection Wiley (CrossRef)
physical 1346-1357
publishDate 2017
publishDateSort 2017
publisher Wiley
record_format ai
recordtype ai
series Plant Biotechnology Journal
source_id 49
spelling Liu, Caixiang Du, Ba Hao, Fuhua Lei, Hehua Wan, Qianfen He, Guangcun Wang, Yulan Tang, Huiru 1467-7644 1467-7652 Wiley Plant Science Agronomy and Crop Science Biotechnology http://dx.doi.org/10.1111/pbi.12721 <jats:title>Summary</jats:title><jats:p>Brown planthopper (<jats:italic>Nilaparvata lugens</jats:italic> Stål, <jats:styled-content style="fixed-case">BPH</jats:styled-content>) causes huge economic losses in rice‐growing regions, and new strategies for combating <jats:styled-content style="fixed-case">BPH</jats:styled-content> are required. To understand how <jats:styled-content style="fixed-case">BPH</jats:styled-content>s respond towards <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐resistant plants, we systematically analysed the metabolic differences between <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant and susceptible plants using <jats:styled-content style="fixed-case">NMR</jats:styled-content> and <jats:styled-content style="fixed-case">GC</jats:styled-content>‐<jats:styled-content style="fixed-case">FID</jats:styled-content>/<jats:styled-content style="fixed-case">MS</jats:styled-content>. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time <jats:styled-content style="fixed-case">PCR</jats:styled-content>. <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates. After initial 12 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content>s feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and <jats:styled-content style="fixed-case">TCA</jats:styled-content> cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the susceptible plants. Decreased levels of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the early feeding probably resulted from less <jats:styled-content style="fixed-case">BPH</jats:styled-content> uptakes of sap from resistant plants and recovery of <jats:styled-content style="fixed-case">BPH</jats:styled-content> metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in <jats:styled-content style="fixed-case">BPH</jats:styled-content>s. Throughout 96 h, <jats:styled-content style="fixed-case">BPH</jats:styled-content> feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the <jats:styled-content style="fixed-case">BPH</jats:styled-content>–rice interactions and perhaps for developing new <jats:styled-content style="fixed-case">BPH</jats:styled-content>‐combating strategies.</jats:p> Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants Plant Biotechnology Journal
spellingShingle Liu, Caixiang, Du, Ba, Hao, Fuhua, Lei, Hehua, Wan, Qianfen, He, Guangcun, Wang, Yulan, Tang, Huiru, Plant Biotechnology Journal, Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants, Plant Science, Agronomy and Crop Science, Biotechnology
title Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_full Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_fullStr Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_full_unstemmed Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_short Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_sort dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
title_unstemmed Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
topic Plant Science, Agronomy and Crop Science, Biotechnology
url http://dx.doi.org/10.1111/pbi.12721