author_facet Perry, Nicola H.
Mason, Thomas O.
Perry, Nicola H.
Mason, Thomas O.
author Perry, Nicola H.
Mason, Thomas O.
spellingShingle Perry, Nicola H.
Mason, Thomas O.
Journal of the American Ceramic Society
Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
Materials Chemistry
Ceramics and Composites
author_sort perry, nicola h.
spelling Perry, Nicola H. Mason, Thomas O. 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.12103 <jats:p>Phase equilibria of the zinc oxide–cobalt oxide system were studied by a combination of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction and <jats:italic>in situ</jats:italic> electrical conductivity and thermopower measurements of bulk ceramic specimens up to 1000°C in air. Rietveld refinement of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction patterns demonstrated increasing solubility of <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>ZnO</jats:roman></jats:styled-content> with increasing temperature, which is supported by the slight increase in wurtzite (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub>1−<jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub><jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content>) cell volume and lattice parameter <jats:italic>a</jats:italic> versus temperature determined for the phase boundary compositions. Similarly, the solubility of <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>CoO</jats:roman></jats:styled-content> increased with increasing temperature. In contrast, the spinel phase (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>3−<jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>4</jats:sub>) exhibited retrograde solubility for <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>. Electrical measurements showed that the eutectoid temperature for transformation of rocksalt <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>1−y</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>y</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content> into wurtzite and spinel is 894 ± 3°C, and the upper temperature limit of the stability of the spinel phase is 894°C–898°C for the compositions <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>/(<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>+<jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>) = 0.82–1. The resulting composition‐temperature phase diagram is presented and compared to the earlier (1955) diagram by Robin.</jats:p> Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air Journal of the American Ceramic Society
doi_str_mv 10.1111/jace.12103
facet_avail Online
finc_class_facet Chemie und Pharmazie
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjEyMTAz
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjEyMTAz
institution DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
issn 0002-7820
1551-2916
issn_str_mv 0002-7820
1551-2916
language English
mega_collection Wiley (CrossRef)
match_str perry2013phaseequilibriaofthezincoxidecobaltoxidesysteminair
publishDateSort 2013
publisher Wiley
recordtype ai
record_format ai
series Journal of the American Ceramic Society
source_id 49
title Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_unstemmed Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_full Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_fullStr Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_full_unstemmed Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_short Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_sort phase equilibria of the zinc oxide–cobalt oxide system in air
topic Materials Chemistry
Ceramics and Composites
url http://dx.doi.org/10.1111/jace.12103
publishDate 2013
physical 966-971
description <jats:p>Phase equilibria of the zinc oxide–cobalt oxide system were studied by a combination of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction and <jats:italic>in situ</jats:italic> electrical conductivity and thermopower measurements of bulk ceramic specimens up to 1000°C in air. Rietveld refinement of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction patterns demonstrated increasing solubility of <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>ZnO</jats:roman></jats:styled-content> with increasing temperature, which is supported by the slight increase in wurtzite (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub>1−<jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub><jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content>) cell volume and lattice parameter <jats:italic>a</jats:italic> versus temperature determined for the phase boundary compositions. Similarly, the solubility of <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>CoO</jats:roman></jats:styled-content> increased with increasing temperature. In contrast, the spinel phase (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>3−<jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>4</jats:sub>) exhibited retrograde solubility for <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>. Electrical measurements showed that the eutectoid temperature for transformation of rocksalt <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>1−y</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>y</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content> into wurtzite and spinel is 894 ± 3°C, and the upper temperature limit of the stability of the spinel phase is 894°C–898°C for the compositions <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>/(<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>+<jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>) = 0.82–1. The resulting composition‐temperature phase diagram is presented and compared to the earlier (1955) diagram by Robin.</jats:p>
container_issue 3
container_start_page 966
container_title Journal of the American Ceramic Society
container_volume 96
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792337334495084545
geogr_code not assigned
last_indexed 2024-03-01T15:14:41.77Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Phase+Equilibria+of+the+Zinc+Oxide%E2%80%93Cobalt+Oxide+System+in+Air&rft.date=2013-03-01&genre=article&issn=1551-2916&volume=96&issue=3&spage=966&epage=971&pages=966-971&jtitle=Journal+of+the+American+Ceramic+Society&atitle=Phase+Equilibria+of+the+Zinc+Oxide%E2%80%93Cobalt+Oxide+System+in+Air&aulast=Mason&aufirst=Thomas+O.&rft_id=info%3Adoi%2F10.1111%2Fjace.12103&rft.language%5B0%5D=eng
SOLR
_version_ 1792337334495084545
author Perry, Nicola H., Mason, Thomas O.
author_facet Perry, Nicola H., Mason, Thomas O., Perry, Nicola H., Mason, Thomas O.
author_sort perry, nicola h.
container_issue 3
container_start_page 966
container_title Journal of the American Ceramic Society
container_volume 96
description <jats:p>Phase equilibria of the zinc oxide–cobalt oxide system were studied by a combination of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction and <jats:italic>in situ</jats:italic> electrical conductivity and thermopower measurements of bulk ceramic specimens up to 1000°C in air. Rietveld refinement of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction patterns demonstrated increasing solubility of <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>ZnO</jats:roman></jats:styled-content> with increasing temperature, which is supported by the slight increase in wurtzite (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub>1−<jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub><jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content>) cell volume and lattice parameter <jats:italic>a</jats:italic> versus temperature determined for the phase boundary compositions. Similarly, the solubility of <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>CoO</jats:roman></jats:styled-content> increased with increasing temperature. In contrast, the spinel phase (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>3−<jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>4</jats:sub>) exhibited retrograde solubility for <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>. Electrical measurements showed that the eutectoid temperature for transformation of rocksalt <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>1−y</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>y</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content> into wurtzite and spinel is 894 ± 3°C, and the upper temperature limit of the stability of the spinel phase is 894°C–898°C for the compositions <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>/(<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>+<jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>) = 0.82–1. The resulting composition‐temperature phase diagram is presented and compared to the earlier (1955) diagram by Robin.</jats:p>
doi_str_mv 10.1111/jace.12103
facet_avail Online
finc_class_facet Chemie und Pharmazie, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjEyMTAz
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
institution DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275
issn 0002-7820, 1551-2916
issn_str_mv 0002-7820, 1551-2916
language English
last_indexed 2024-03-01T15:14:41.77Z
match_str perry2013phaseequilibriaofthezincoxidecobaltoxidesysteminair
mega_collection Wiley (CrossRef)
physical 966-971
publishDate 2013
publishDateSort 2013
publisher Wiley
record_format ai
recordtype ai
series Journal of the American Ceramic Society
source_id 49
spelling Perry, Nicola H. Mason, Thomas O. 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.12103 <jats:p>Phase equilibria of the zinc oxide–cobalt oxide system were studied by a combination of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction and <jats:italic>in situ</jats:italic> electrical conductivity and thermopower measurements of bulk ceramic specimens up to 1000°C in air. Rietveld refinement of <jats:styled-content style="fixed-case">X</jats:styled-content>‐ray diffraction patterns demonstrated increasing solubility of <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>ZnO</jats:roman></jats:styled-content> with increasing temperature, which is supported by the slight increase in wurtzite (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub>1−<jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub><jats:italic>x</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content>) cell volume and lattice parameter <jats:italic>a</jats:italic> versus temperature determined for the phase boundary compositions. Similarly, the solubility of <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:roman>CoO</jats:roman></jats:styled-content> increased with increasing temperature. In contrast, the spinel phase (<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>3−<jats:italic>z</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>4</jats:sub>) exhibited retrograde solubility for <jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>. Electrical measurements showed that the eutectoid temperature for transformation of rocksalt <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content><jats:sub>1−y</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content><jats:sub><jats:italic>y</jats:italic></jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content> into wurtzite and spinel is 894 ± 3°C, and the upper temperature limit of the stability of the spinel phase is 894°C–898°C for the compositions <jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>/(<jats:styled-content style="fixed-case"><jats:roman>Zn</jats:roman></jats:styled-content>+<jats:styled-content style="fixed-case"><jats:roman>Co</jats:roman></jats:styled-content>) = 0.82–1. The resulting composition‐temperature phase diagram is presented and compared to the earlier (1955) diagram by Robin.</jats:p> Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air Journal of the American Ceramic Society
spellingShingle Perry, Nicola H., Mason, Thomas O., Journal of the American Ceramic Society, Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air, Materials Chemistry, Ceramics and Composites
title Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_full Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_fullStr Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_full_unstemmed Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_short Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
title_sort phase equilibria of the zinc oxide–cobalt oxide system in air
title_unstemmed Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air
topic Materials Chemistry, Ceramics and Composites
url http://dx.doi.org/10.1111/jace.12103