author_facet Sharma, Geetu
Ushakov, Sergey V.
Navrotsky, Alexandra
Sharma, Geetu
Ushakov, Sergey V.
Navrotsky, Alexandra
author Sharma, Geetu
Ushakov, Sergey V.
Navrotsky, Alexandra
spellingShingle Sharma, Geetu
Ushakov, Sergey V.
Navrotsky, Alexandra
Journal of the American Ceramic Society
Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
Materials Chemistry
Ceramics and Composites
author_sort sharma, geetu
spelling Sharma, Geetu Ushakov, Sergey V. Navrotsky, Alexandra 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.15200 <jats:title>Abstract</jats:title><jats:p>Hafnia (HfO<jats:sub>2</jats:sub>) and zirconia (ZrO<jats:sub>2</jats:sub>) are of great interest in the quest for replacing silicon oxide in semiconductor field effect transistors because of their high permittivity. Both exhibit extensive polymorphism and understanding the energetics of their transitions is of major fundamental and practical importance. In this study, we present a systematic thermodynamic summary of the influence of particle size on thermodynamic phase stability in hafnia and zirconia using recently measured enthalpy data from the literature. The amorphous phase is found to be the most energetically stable above 165 and 363 m<jats:sup>2</jats:sup>/g of surface area for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>, respectively. Below 16 and 20.3 m<jats:sup>2</jats:sup>/g of surface area, respectively, the monoclinic phase is the most energetically stable for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>. At intermediate sizes there are closely balanced energetics among monoclinic, tetragonal, and cubic phases. The energy crossovers reflect decreasing surface enthalpy in the order monoclinic, tetragonal, cubic and amorphous for both hafnia and zirconia.</jats:p> Size driven thermodynamic crossovers in phase stability in zirconia and hafnia Journal of the American Ceramic Society
doi_str_mv 10.1111/jace.15200
facet_avail Online
finc_class_facet Chemie und Pharmazie
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MjAw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MjAw
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2018
imprint_str_mv Wiley, 2018
issn 0002-7820
1551-2916
issn_str_mv 0002-7820
1551-2916
language English
mega_collection Wiley (CrossRef)
match_str sharma2018sizedriventhermodynamiccrossoversinphasestabilityinzirconiaandhafnia
publishDateSort 2018
publisher Wiley
recordtype ai
record_format ai
series Journal of the American Ceramic Society
source_id 49
title Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_unstemmed Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_full Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_fullStr Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_full_unstemmed Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_short Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_sort size driven thermodynamic crossovers in phase stability in zirconia and hafnia
topic Materials Chemistry
Ceramics and Composites
url http://dx.doi.org/10.1111/jace.15200
publishDate 2018
physical 31-35
description <jats:title>Abstract</jats:title><jats:p>Hafnia (HfO<jats:sub>2</jats:sub>) and zirconia (ZrO<jats:sub>2</jats:sub>) are of great interest in the quest for replacing silicon oxide in semiconductor field effect transistors because of their high permittivity. Both exhibit extensive polymorphism and understanding the energetics of their transitions is of major fundamental and practical importance. In this study, we present a systematic thermodynamic summary of the influence of particle size on thermodynamic phase stability in hafnia and zirconia using recently measured enthalpy data from the literature. The amorphous phase is found to be the most energetically stable above 165 and 363 m<jats:sup>2</jats:sup>/g of surface area for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>, respectively. Below 16 and 20.3 m<jats:sup>2</jats:sup>/g of surface area, respectively, the monoclinic phase is the most energetically stable for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>. At intermediate sizes there are closely balanced energetics among monoclinic, tetragonal, and cubic phases. The energy crossovers reflect decreasing surface enthalpy in the order monoclinic, tetragonal, cubic and amorphous for both hafnia and zirconia.</jats:p>
container_issue 1
container_start_page 31
container_title Journal of the American Ceramic Society
container_volume 101
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346738436079616
geogr_code not assigned
last_indexed 2024-03-01T17:43:56.046Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Size+driven+thermodynamic+crossovers+in+phase+stability+in+zirconia+and+hafnia&rft.date=2018-01-01&genre=article&issn=1551-2916&volume=101&issue=1&spage=31&epage=35&pages=31-35&jtitle=Journal+of+the+American+Ceramic+Society&atitle=Size+driven+thermodynamic+crossovers+in+phase+stability+in+zirconia+and+hafnia&aulast=Navrotsky&aufirst=Alexandra&rft_id=info%3Adoi%2F10.1111%2Fjace.15200&rft.language%5B0%5D=eng
SOLR
_version_ 1792346738436079616
author Sharma, Geetu, Ushakov, Sergey V., Navrotsky, Alexandra
author_facet Sharma, Geetu, Ushakov, Sergey V., Navrotsky, Alexandra, Sharma, Geetu, Ushakov, Sergey V., Navrotsky, Alexandra
author_sort sharma, geetu
container_issue 1
container_start_page 31
container_title Journal of the American Ceramic Society
container_volume 101
description <jats:title>Abstract</jats:title><jats:p>Hafnia (HfO<jats:sub>2</jats:sub>) and zirconia (ZrO<jats:sub>2</jats:sub>) are of great interest in the quest for replacing silicon oxide in semiconductor field effect transistors because of their high permittivity. Both exhibit extensive polymorphism and understanding the energetics of their transitions is of major fundamental and practical importance. In this study, we present a systematic thermodynamic summary of the influence of particle size on thermodynamic phase stability in hafnia and zirconia using recently measured enthalpy data from the literature. The amorphous phase is found to be the most energetically stable above 165 and 363 m<jats:sup>2</jats:sup>/g of surface area for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>, respectively. Below 16 and 20.3 m<jats:sup>2</jats:sup>/g of surface area, respectively, the monoclinic phase is the most energetically stable for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>. At intermediate sizes there are closely balanced energetics among monoclinic, tetragonal, and cubic phases. The energy crossovers reflect decreasing surface enthalpy in the order monoclinic, tetragonal, cubic and amorphous for both hafnia and zirconia.</jats:p>
doi_str_mv 10.1111/jace.15200
facet_avail Online
finc_class_facet Chemie und Pharmazie, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MjAw
imprint Wiley, 2018
imprint_str_mv Wiley, 2018
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 0002-7820, 1551-2916
issn_str_mv 0002-7820, 1551-2916
language English
last_indexed 2024-03-01T17:43:56.046Z
match_str sharma2018sizedriventhermodynamiccrossoversinphasestabilityinzirconiaandhafnia
mega_collection Wiley (CrossRef)
physical 31-35
publishDate 2018
publishDateSort 2018
publisher Wiley
record_format ai
recordtype ai
series Journal of the American Ceramic Society
source_id 49
spelling Sharma, Geetu Ushakov, Sergey V. Navrotsky, Alexandra 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.15200 <jats:title>Abstract</jats:title><jats:p>Hafnia (HfO<jats:sub>2</jats:sub>) and zirconia (ZrO<jats:sub>2</jats:sub>) are of great interest in the quest for replacing silicon oxide in semiconductor field effect transistors because of their high permittivity. Both exhibit extensive polymorphism and understanding the energetics of their transitions is of major fundamental and practical importance. In this study, we present a systematic thermodynamic summary of the influence of particle size on thermodynamic phase stability in hafnia and zirconia using recently measured enthalpy data from the literature. The amorphous phase is found to be the most energetically stable above 165 and 363 m<jats:sup>2</jats:sup>/g of surface area for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>, respectively. Below 16 and 20.3 m<jats:sup>2</jats:sup>/g of surface area, respectively, the monoclinic phase is the most energetically stable for HfO<jats:sub>2</jats:sub> and ZrO<jats:sub>2</jats:sub>. At intermediate sizes there are closely balanced energetics among monoclinic, tetragonal, and cubic phases. The energy crossovers reflect decreasing surface enthalpy in the order monoclinic, tetragonal, cubic and amorphous for both hafnia and zirconia.</jats:p> Size driven thermodynamic crossovers in phase stability in zirconia and hafnia Journal of the American Ceramic Society
spellingShingle Sharma, Geetu, Ushakov, Sergey V., Navrotsky, Alexandra, Journal of the American Ceramic Society, Size driven thermodynamic crossovers in phase stability in zirconia and hafnia, Materials Chemistry, Ceramics and Composites
title Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_full Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_fullStr Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_full_unstemmed Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_short Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_sort size driven thermodynamic crossovers in phase stability in zirconia and hafnia
title_unstemmed Size driven thermodynamic crossovers in phase stability in zirconia and hafnia
topic Materials Chemistry, Ceramics and Composites
url http://dx.doi.org/10.1111/jace.15200