author_facet Huang, Xiang
Zeng, Jiangtao
Ruan, Xuezheng
Zheng, Liaoying
Li, Guorong
Huang, Xiang
Zeng, Jiangtao
Ruan, Xuezheng
Zheng, Liaoying
Li, Guorong
author Huang, Xiang
Zeng, Jiangtao
Ruan, Xuezheng
Zheng, Liaoying
Li, Guorong
spellingShingle Huang, Xiang
Zeng, Jiangtao
Ruan, Xuezheng
Zheng, Liaoying
Li, Guorong
Journal of the American Ceramic Society
Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
Materials Chemistry
Ceramics and Composites
author_sort huang, xiang
spelling Huang, Xiang Zeng, Jiangtao Ruan, Xuezheng Zheng, Liaoying Li, Guorong 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.15179 <jats:title>Abstract</jats:title><jats:p><jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>P</jats:styled-content>b(Zn<jats:sub>0.5</jats:sub>Te<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub>–(1−<jats:italic>x</jats:italic>)Pb(Zr<jats:sub>0.5</jats:sub>Ti<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub> (<jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content>) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (<jats:styled-content style="fixed-case">MPB</jats:styled-content>) existed at the composition of <jats:italic>x</jats:italic> = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe was added in. The <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics at the <jats:styled-content style="fixed-case">MPB</jats:styled-content> composition showed the largest high field effective piezoelectric coefficient <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace15179-math-0001.png" xlink:title="urn:x-wiley:00027820:media:jace15179:jace15179-math-0001" /> and the lowest strain hysteresis <jats:italic>H</jats:italic>. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in <jats:italic>T</jats:italic><jats:sub>m</jats:sub> temperature vs <jats:italic>x</jats:italic> content and a <jats:styled-content style="fixed-case">DPT</jats:styled-content> behavior was found in <jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>PZnT</jats:styled-content>e–(1−<jats:italic>x</jats:italic>)<jats:styled-content style="fixed-case">PZT</jats:styled-content> (<jats:italic>x</jats:italic> = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of <jats:styled-content style="fixed-case">DPT</jats:styled-content> in <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics.</jats:p> Structure, electrical, and thermal expansion properties of <scp>PZ</scp>nTe–<scp>PZT</scp> ternary system piezoelectric ceramics Journal of the American Ceramic Society
doi_str_mv 10.1111/jace.15179
facet_avail Online
finc_class_facet Chemie und Pharmazie
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MTc5
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MTc5
institution DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
imprint Wiley, 2018
imprint_str_mv Wiley, 2018
issn 1551-2916
0002-7820
issn_str_mv 1551-2916
0002-7820
language English
mega_collection Wiley (CrossRef)
match_str huang2018structureelectricalandthermalexpansionpropertiesofpzntepztternarysystempiezoelectricceramics
publishDateSort 2018
publisher Wiley
recordtype ai
record_format ai
series Journal of the American Ceramic Society
source_id 49
title Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_unstemmed Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_full Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_fullStr Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_full_unstemmed Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_short Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_sort structure, electrical, and thermal expansion properties of <scp>pz</scp>nte–<scp>pzt</scp> ternary system piezoelectric ceramics
topic Materials Chemistry
Ceramics and Composites
url http://dx.doi.org/10.1111/jace.15179
publishDate 2018
physical 274-282
description <jats:title>Abstract</jats:title><jats:p><jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>P</jats:styled-content>b(Zn<jats:sub>0.5</jats:sub>Te<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub>–(1−<jats:italic>x</jats:italic>)Pb(Zr<jats:sub>0.5</jats:sub>Ti<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub> (<jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content>) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (<jats:styled-content style="fixed-case">MPB</jats:styled-content>) existed at the composition of <jats:italic>x</jats:italic> = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe was added in. The <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics at the <jats:styled-content style="fixed-case">MPB</jats:styled-content> composition showed the largest high field effective piezoelectric coefficient <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace15179-math-0001.png" xlink:title="urn:x-wiley:00027820:media:jace15179:jace15179-math-0001" /> and the lowest strain hysteresis <jats:italic>H</jats:italic>. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in <jats:italic>T</jats:italic><jats:sub>m</jats:sub> temperature vs <jats:italic>x</jats:italic> content and a <jats:styled-content style="fixed-case">DPT</jats:styled-content> behavior was found in <jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>PZnT</jats:styled-content>e–(1−<jats:italic>x</jats:italic>)<jats:styled-content style="fixed-case">PZT</jats:styled-content> (<jats:italic>x</jats:italic> = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of <jats:styled-content style="fixed-case">DPT</jats:styled-content> in <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics.</jats:p>
container_issue 1
container_start_page 274
container_title Journal of the American Ceramic Society
container_volume 101
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346555122974732
geogr_code not assigned
last_indexed 2024-03-01T17:40:55.829Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Structure%2C+electrical%2C+and+thermal+expansion+properties+of+PZnTe%E2%80%93PZT+ternary+system+piezoelectric+ceramics&rft.date=2018-01-01&genre=article&issn=1551-2916&volume=101&issue=1&spage=274&epage=282&pages=274-282&jtitle=Journal+of+the+American+Ceramic+Society&atitle=Structure%2C+electrical%2C+and+thermal+expansion+properties+of+%3Cscp%3EPZ%3C%2Fscp%3EnTe%E2%80%93%3Cscp%3EPZT%3C%2Fscp%3E+ternary+system+piezoelectric+ceramics&aulast=Li&aufirst=Guorong&rft_id=info%3Adoi%2F10.1111%2Fjace.15179&rft.language%5B0%5D=eng
SOLR
_version_ 1792346555122974732
author Huang, Xiang, Zeng, Jiangtao, Ruan, Xuezheng, Zheng, Liaoying, Li, Guorong
author_facet Huang, Xiang, Zeng, Jiangtao, Ruan, Xuezheng, Zheng, Liaoying, Li, Guorong, Huang, Xiang, Zeng, Jiangtao, Ruan, Xuezheng, Zheng, Liaoying, Li, Guorong
author_sort huang, xiang
container_issue 1
container_start_page 274
container_title Journal of the American Ceramic Society
container_volume 101
description <jats:title>Abstract</jats:title><jats:p><jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>P</jats:styled-content>b(Zn<jats:sub>0.5</jats:sub>Te<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub>–(1−<jats:italic>x</jats:italic>)Pb(Zr<jats:sub>0.5</jats:sub>Ti<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub> (<jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content>) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (<jats:styled-content style="fixed-case">MPB</jats:styled-content>) existed at the composition of <jats:italic>x</jats:italic> = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe was added in. The <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics at the <jats:styled-content style="fixed-case">MPB</jats:styled-content> composition showed the largest high field effective piezoelectric coefficient <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace15179-math-0001.png" xlink:title="urn:x-wiley:00027820:media:jace15179:jace15179-math-0001" /> and the lowest strain hysteresis <jats:italic>H</jats:italic>. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in <jats:italic>T</jats:italic><jats:sub>m</jats:sub> temperature vs <jats:italic>x</jats:italic> content and a <jats:styled-content style="fixed-case">DPT</jats:styled-content> behavior was found in <jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>PZnT</jats:styled-content>e–(1−<jats:italic>x</jats:italic>)<jats:styled-content style="fixed-case">PZT</jats:styled-content> (<jats:italic>x</jats:italic> = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of <jats:styled-content style="fixed-case">DPT</jats:styled-content> in <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics.</jats:p>
doi_str_mv 10.1111/jace.15179
facet_avail Online
finc_class_facet Chemie und Pharmazie, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qYWNlLjE1MTc5
imprint Wiley, 2018
imprint_str_mv Wiley, 2018
institution DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15
issn 1551-2916, 0002-7820
issn_str_mv 1551-2916, 0002-7820
language English
last_indexed 2024-03-01T17:40:55.829Z
match_str huang2018structureelectricalandthermalexpansionpropertiesofpzntepztternarysystempiezoelectricceramics
mega_collection Wiley (CrossRef)
physical 274-282
publishDate 2018
publishDateSort 2018
publisher Wiley
record_format ai
recordtype ai
series Journal of the American Ceramic Society
source_id 49
spelling Huang, Xiang Zeng, Jiangtao Ruan, Xuezheng Zheng, Liaoying Li, Guorong 0002-7820 1551-2916 Wiley Materials Chemistry Ceramics and Composites http://dx.doi.org/10.1111/jace.15179 <jats:title>Abstract</jats:title><jats:p><jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>P</jats:styled-content>b(Zn<jats:sub>0.5</jats:sub>Te<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub>–(1−<jats:italic>x</jats:italic>)Pb(Zr<jats:sub>0.5</jats:sub>Ti<jats:sub>0.5</jats:sub>)O<jats:sub>3</jats:sub> (<jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content>) ceramics were prepared by the solid‐state reaction method. The phase structure, microstructure, ferroelectric and dielectric properties and thermal expansion properties were systematically investigated. X‐ray diffraction analysis showed the morphotropic phase boundary (<jats:styled-content style="fixed-case">MPB</jats:styled-content>) existed at the composition of <jats:italic>x</jats:italic> = 0.08, which was the coexistence of the rhombohedral phase and the tetragonal phase. The grain size of ceramics decreased rapidly from 10‐20 μm to 1‐3 μm when the <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe was added in. The <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics at the <jats:styled-content style="fixed-case">MPB</jats:styled-content> composition showed the largest high field effective piezoelectric coefficient <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace15179-math-0001.png" xlink:title="urn:x-wiley:00027820:media:jace15179:jace15179-math-0001" /> and the lowest strain hysteresis <jats:italic>H</jats:italic>. The dielectric permittivity and phase transition temperature exhibited strongly compositional dependence. A good linear relation was shown in <jats:italic>T</jats:italic><jats:sub>m</jats:sub> temperature vs <jats:italic>x</jats:italic> content and a <jats:styled-content style="fixed-case">DPT</jats:styled-content> behavior was found in <jats:styled-content style="fixed-case"><jats:italic>x</jats:italic>PZnT</jats:styled-content>e–(1−<jats:italic>x</jats:italic>)<jats:styled-content style="fixed-case">PZT</jats:styled-content> (<jats:italic>x</jats:italic> = 0.02‐0.08). The thermal expansion properties showed a low thermal expansion coefficient in the low temperature while a high thermal expansion coefficient in the high temperature. Besides, the thermal expansion curve also showed the characteristic of <jats:styled-content style="fixed-case">DPT</jats:styled-content> in <jats:styled-content style="fixed-case">PZ</jats:styled-content>nTe–<jats:styled-content style="fixed-case">PZT</jats:styled-content> ceramics.</jats:p> Structure, electrical, and thermal expansion properties of <scp>PZ</scp>nTe–<scp>PZT</scp> ternary system piezoelectric ceramics Journal of the American Ceramic Society
spellingShingle Huang, Xiang, Zeng, Jiangtao, Ruan, Xuezheng, Zheng, Liaoying, Li, Guorong, Journal of the American Ceramic Society, Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics, Materials Chemistry, Ceramics and Composites
title Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_full Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_fullStr Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_full_unstemmed Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_short Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
title_sort structure, electrical, and thermal expansion properties of <scp>pz</scp>nte–<scp>pzt</scp> ternary system piezoelectric ceramics
title_unstemmed Structure, electrical, and thermal expansion properties of PZnTe–PZT ternary system piezoelectric ceramics
topic Materials Chemistry, Ceramics and Composites
url http://dx.doi.org/10.1111/jace.15179