author_facet Xing, Tao
Fong, Angelina Y
Bautista, Tara G
Pilowsky, Paul M
Xing, Tao
Fong, Angelina Y
Bautista, Tara G
Pilowsky, Paul M
author Xing, Tao
Fong, Angelina Y
Bautista, Tara G
Pilowsky, Paul M
spellingShingle Xing, Tao
Fong, Angelina Y
Bautista, Tara G
Pilowsky, Paul M
Clinical and Experimental Pharmacology and Physiology
Acute intermittent hypoxia induced neural plasticity in respiratory motor control
Physiology (medical)
Pharmacology
Physiology
author_sort xing, tao
spelling Xing, Tao Fong, Angelina Y Bautista, Tara G Pilowsky, Paul M 0305-1870 1440-1681 Wiley Physiology (medical) Pharmacology Physiology http://dx.doi.org/10.1111/1440-1681.12129 <jats:title>Summary</jats:title><jats:p> <jats:list> <jats:list-item><jats:p>Respiratory neural networks can adapt to rapid environmental change or be altered over the long term by various inputs. The mechanisms that underlie the plasticity necessary for adaptive changes in breathing remain unclear. Acute intermittent hypoxia (<jats:styled-content style="fixed-case">AIH</jats:styled-content>)‐induced respiratory long‐term facilitation (<jats:styled-content style="fixed-case">LTF</jats:styled-content>) is one of the most extensively studied types of respiratory plasticity.</jats:p></jats:list-item> <jats:list-item><jats:p>Acute intermittent hypoxia‐induced <jats:styled-content style="fixed-case">LTF</jats:styled-content> is present in several respiratory motor outputs, innervating both pump muscles (i.e. diaphragm) and valve muscles (i.e. tongue, pharynx and larynx). Long‐term facilitation is present in various species, including humans, and the expression of <jats:styled-content style="fixed-case">LTF</jats:styled-content> is influenced by gender, age and genetics.</jats:p></jats:list-item> <jats:list-item><jats:p>Serotonin plays a key role in initiating and modulating plasticity at the level of respiratory motor neurons. Recently, multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content>. These mainly activate the metabolic receptors coupled to G<jats:sub>q</jats:sub> (‘Q’ pathway) and G<jats:sub>s</jats:sub> (‘S’ pathway) proteins.</jats:p></jats:list-item> <jats:list-item><jats:p>Herein, we discuss <jats:styled-content style="fixed-case">AIH</jats:styled-content>‐induced respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content> in animals and humans, as well as recent advances in our understanding of the synaptic and intracellular pathways underlying this form of plasticity. We also discuss the potential to use intermittent hypoxia to induce functional recovery following cervical spinal injury.</jats:p></jats:list-item> </jats:list> </jats:p> Acute intermittent hypoxia induced neural plasticity in respiratory motor control Clinical and Experimental Pharmacology and Physiology
doi_str_mv 10.1111/1440-1681.12129
facet_avail Online
finc_class_facet Biologie
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS8xNDQwLTE2ODEuMTIxMjk
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS8xNDQwLTE2ODEuMTIxMjk
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
issn 0305-1870
1440-1681
issn_str_mv 0305-1870
1440-1681
language English
mega_collection Wiley (CrossRef)
match_str xing2013acuteintermittenthypoxiainducedneuralplasticityinrespiratorymotorcontrol
publishDateSort 2013
publisher Wiley
recordtype ai
record_format ai
series Clinical and Experimental Pharmacology and Physiology
source_id 49
title Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_unstemmed Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_full Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_fullStr Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_full_unstemmed Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_short Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_sort acute intermittent hypoxia induced neural plasticity in respiratory motor control
topic Physiology (medical)
Pharmacology
Physiology
url http://dx.doi.org/10.1111/1440-1681.12129
publishDate 2013
physical 602-609
description <jats:title>Summary</jats:title><jats:p> <jats:list> <jats:list-item><jats:p>Respiratory neural networks can adapt to rapid environmental change or be altered over the long term by various inputs. The mechanisms that underlie the plasticity necessary for adaptive changes in breathing remain unclear. Acute intermittent hypoxia (<jats:styled-content style="fixed-case">AIH</jats:styled-content>)‐induced respiratory long‐term facilitation (<jats:styled-content style="fixed-case">LTF</jats:styled-content>) is one of the most extensively studied types of respiratory plasticity.</jats:p></jats:list-item> <jats:list-item><jats:p>Acute intermittent hypoxia‐induced <jats:styled-content style="fixed-case">LTF</jats:styled-content> is present in several respiratory motor outputs, innervating both pump muscles (i.e. diaphragm) and valve muscles (i.e. tongue, pharynx and larynx). Long‐term facilitation is present in various species, including humans, and the expression of <jats:styled-content style="fixed-case">LTF</jats:styled-content> is influenced by gender, age and genetics.</jats:p></jats:list-item> <jats:list-item><jats:p>Serotonin plays a key role in initiating and modulating plasticity at the level of respiratory motor neurons. Recently, multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content>. These mainly activate the metabolic receptors coupled to G<jats:sub>q</jats:sub> (‘Q’ pathway) and G<jats:sub>s</jats:sub> (‘S’ pathway) proteins.</jats:p></jats:list-item> <jats:list-item><jats:p>Herein, we discuss <jats:styled-content style="fixed-case">AIH</jats:styled-content>‐induced respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content> in animals and humans, as well as recent advances in our understanding of the synaptic and intracellular pathways underlying this form of plasticity. We also discuss the potential to use intermittent hypoxia to induce functional recovery following cervical spinal injury.</jats:p></jats:list-item> </jats:list> </jats:p>
container_issue 9
container_start_page 602
container_title Clinical and Experimental Pharmacology and Physiology
container_volume 40
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792342024770289665
geogr_code not assigned
last_indexed 2024-03-01T16:29:14.026Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Acute+intermittent+hypoxia+induced+neural+plasticity+in+respiratory+motor+control&rft.date=2013-09-01&genre=article&issn=1440-1681&volume=40&issue=9&spage=602&epage=609&pages=602-609&jtitle=Clinical+and+Experimental+Pharmacology+and+Physiology&atitle=Acute+intermittent+hypoxia+induced+neural+plasticity+in+respiratory+motor+control&aulast=Pilowsky&aufirst=Paul+M&rft_id=info%3Adoi%2F10.1111%2F1440-1681.12129&rft.language%5B0%5D=eng
SOLR
_version_ 1792342024770289665
author Xing, Tao, Fong, Angelina Y, Bautista, Tara G, Pilowsky, Paul M
author_facet Xing, Tao, Fong, Angelina Y, Bautista, Tara G, Pilowsky, Paul M, Xing, Tao, Fong, Angelina Y, Bautista, Tara G, Pilowsky, Paul M
author_sort xing, tao
container_issue 9
container_start_page 602
container_title Clinical and Experimental Pharmacology and Physiology
container_volume 40
description <jats:title>Summary</jats:title><jats:p> <jats:list> <jats:list-item><jats:p>Respiratory neural networks can adapt to rapid environmental change or be altered over the long term by various inputs. The mechanisms that underlie the plasticity necessary for adaptive changes in breathing remain unclear. Acute intermittent hypoxia (<jats:styled-content style="fixed-case">AIH</jats:styled-content>)‐induced respiratory long‐term facilitation (<jats:styled-content style="fixed-case">LTF</jats:styled-content>) is one of the most extensively studied types of respiratory plasticity.</jats:p></jats:list-item> <jats:list-item><jats:p>Acute intermittent hypoxia‐induced <jats:styled-content style="fixed-case">LTF</jats:styled-content> is present in several respiratory motor outputs, innervating both pump muscles (i.e. diaphragm) and valve muscles (i.e. tongue, pharynx and larynx). Long‐term facilitation is present in various species, including humans, and the expression of <jats:styled-content style="fixed-case">LTF</jats:styled-content> is influenced by gender, age and genetics.</jats:p></jats:list-item> <jats:list-item><jats:p>Serotonin plays a key role in initiating and modulating plasticity at the level of respiratory motor neurons. Recently, multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content>. These mainly activate the metabolic receptors coupled to G<jats:sub>q</jats:sub> (‘Q’ pathway) and G<jats:sub>s</jats:sub> (‘S’ pathway) proteins.</jats:p></jats:list-item> <jats:list-item><jats:p>Herein, we discuss <jats:styled-content style="fixed-case">AIH</jats:styled-content>‐induced respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content> in animals and humans, as well as recent advances in our understanding of the synaptic and intracellular pathways underlying this form of plasticity. We also discuss the potential to use intermittent hypoxia to induce functional recovery following cervical spinal injury.</jats:p></jats:list-item> </jats:list> </jats:p>
doi_str_mv 10.1111/1440-1681.12129
facet_avail Online
finc_class_facet Biologie, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS8xNDQwLTE2ODEuMTIxMjk
imprint Wiley, 2013
imprint_str_mv Wiley, 2013
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 0305-1870, 1440-1681
issn_str_mv 0305-1870, 1440-1681
language English
last_indexed 2024-03-01T16:29:14.026Z
match_str xing2013acuteintermittenthypoxiainducedneuralplasticityinrespiratorymotorcontrol
mega_collection Wiley (CrossRef)
physical 602-609
publishDate 2013
publishDateSort 2013
publisher Wiley
record_format ai
recordtype ai
series Clinical and Experimental Pharmacology and Physiology
source_id 49
spelling Xing, Tao Fong, Angelina Y Bautista, Tara G Pilowsky, Paul M 0305-1870 1440-1681 Wiley Physiology (medical) Pharmacology Physiology http://dx.doi.org/10.1111/1440-1681.12129 <jats:title>Summary</jats:title><jats:p> <jats:list> <jats:list-item><jats:p>Respiratory neural networks can adapt to rapid environmental change or be altered over the long term by various inputs. The mechanisms that underlie the plasticity necessary for adaptive changes in breathing remain unclear. Acute intermittent hypoxia (<jats:styled-content style="fixed-case">AIH</jats:styled-content>)‐induced respiratory long‐term facilitation (<jats:styled-content style="fixed-case">LTF</jats:styled-content>) is one of the most extensively studied types of respiratory plasticity.</jats:p></jats:list-item> <jats:list-item><jats:p>Acute intermittent hypoxia‐induced <jats:styled-content style="fixed-case">LTF</jats:styled-content> is present in several respiratory motor outputs, innervating both pump muscles (i.e. diaphragm) and valve muscles (i.e. tongue, pharynx and larynx). Long‐term facilitation is present in various species, including humans, and the expression of <jats:styled-content style="fixed-case">LTF</jats:styled-content> is influenced by gender, age and genetics.</jats:p></jats:list-item> <jats:list-item><jats:p>Serotonin plays a key role in initiating and modulating plasticity at the level of respiratory motor neurons. Recently, multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content>. These mainly activate the metabolic receptors coupled to G<jats:sub>q</jats:sub> (‘Q’ pathway) and G<jats:sub>s</jats:sub> (‘S’ pathway) proteins.</jats:p></jats:list-item> <jats:list-item><jats:p>Herein, we discuss <jats:styled-content style="fixed-case">AIH</jats:styled-content>‐induced respiratory <jats:styled-content style="fixed-case">LTF</jats:styled-content> in animals and humans, as well as recent advances in our understanding of the synaptic and intracellular pathways underlying this form of plasticity. We also discuss the potential to use intermittent hypoxia to induce functional recovery following cervical spinal injury.</jats:p></jats:list-item> </jats:list> </jats:p> Acute intermittent hypoxia induced neural plasticity in respiratory motor control Clinical and Experimental Pharmacology and Physiology
spellingShingle Xing, Tao, Fong, Angelina Y, Bautista, Tara G, Pilowsky, Paul M, Clinical and Experimental Pharmacology and Physiology, Acute intermittent hypoxia induced neural plasticity in respiratory motor control, Physiology (medical), Pharmacology, Physiology
title Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_full Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_fullStr Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_full_unstemmed Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_short Acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_sort acute intermittent hypoxia induced neural plasticity in respiratory motor control
title_unstemmed Acute intermittent hypoxia induced neural plasticity in respiratory motor control
topic Physiology (medical), Pharmacology, Physiology
url http://dx.doi.org/10.1111/1440-1681.12129