author_facet Ueno, Niina
Ueno, Shikiko
Endo, Shinya
Nishimura, Nao
Tatetsu, Hiro
Hirata, Shinya
Mitsuya, Hiroaki
Okuno, Yutaka
Ueno, Niina
Ueno, Shikiko
Endo, Shinya
Nishimura, Nao
Tatetsu, Hiro
Hirata, Shinya
Mitsuya, Hiroaki
Okuno, Yutaka
author Ueno, Niina
Ueno, Shikiko
Endo, Shinya
Nishimura, Nao
Tatetsu, Hiro
Hirata, Shinya
Mitsuya, Hiroaki
Okuno, Yutaka
spellingShingle Ueno, Niina
Ueno, Shikiko
Endo, Shinya
Nishimura, Nao
Tatetsu, Hiro
Hirata, Shinya
Mitsuya, Hiroaki
Okuno, Yutaka
Blood
PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
Cell Biology
Hematology
Immunology
Biochemistry
author_sort ueno, niina
spelling Ueno, Niina Ueno, Shikiko Endo, Shinya Nishimura, Nao Tatetsu, Hiro Hirata, Shinya Mitsuya, Hiroaki Okuno, Yutaka 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.2957.2957 <jats:title>Abstract</jats:title> <jats:p>PU.1 is an Ets family transcription factor, which is necessary for differentiation of both myeloid and lymphoid lineages. It was previously reported that conditional knockout of the upstream regulatory element (URE) located in 14 kb 5' of the PU.1 gene resulted in down-regulation of PU.1 expression in granulocytes and B lymphocytes by 80% compared to that of wild type and induced acute myeloid leukemia and CLL-like diseases in mice. Since the URE contains a suppressor region for PU.1 expression in T cells, such mice express PU.1 in T cells and develop T cell lymphoma. Thus, the failure of proper expression of PU.1 in certain differentiation stages in certain cell lineages appears to result in hematological malignancies. We previously reported that PU.1 is down-regulated in various myeloma cell lines. In addition, PU.1 is expressed in normal plasma cells and PU.1 is down-regulated in myeloma cells of certain myeloma patients, who appear to have poor prognosis. In those myeloma cell lines, the promoter and URE of the PU.1 gene are highly methylated. A demethylation agent, 5-aza-2'-deoxycytidine, induced PU.1 up-regulation, growth arrest, and apoptosis in myeloma cell lines, KMS12PE and KHM11. In addition, conditionally expressed PU.1 induced cell growth arrest and apoptosis in PU.1-low-negative myeloma cell lines, U266 and KMS12PE, suggesting that PU.1 is a tumor suppressor for myeloma cells. To elucidate the mechanisms of the cell growth arrest and apoptosis in myeloma cells induced by PU.1, we performed DNA microarray analysis to compare gene expression levels before and after PU.1 expression. Among cell-cycle related genes, p21WAF1/CIP1 was found up-regulated in U266 cells, while among apoptosis related genes, TRAIL was highly up-regulated in both U266 and KMS12PE cell lines. With further investigation, we concluded that PU.1 directly transactivated the TRAIL gene in myeloma cells, leading to apoptosis.</jats:p> <jats:p>Based on the DNA microarray data generated, we found that IRF4 is downregulated in U266 myeloma cells after PU.1 induction. It has been reported that knockdown of IRF4 induces apoptosis in myeloma cell lines. Therefore, we examined whether IRF4 was down-regulated in three myeloma cell lines, U266, KMS12PE, and KHM11 following PU.1 induction. Conditional expression of PU.1 by tet-off system induced IRF4 down-regulation in U266and KMS12PE cells. With lentiviral transduction method, ectopic expression of PU.1 also induced IRF4 down-regulation, cell-cycle arrest, and apoptosis in KHM11 cells. To investigate the role of IRF4 in PU.1-expressing U266 cells, we stably expressed IRF4, partially rescuing U266 cells from apoptosis. IRF4 is known to directly bind to the IRF7 promoter and down-regulate IRF7 expression in activated B cell-like (ABC) subtype of diffuse large B-cell lymphoma cells. Therefore, we examined whether IRF4 bound to the IRF7 promoter in KMS12PEand U266cells using chromatin immunoprecipitation assays. We found that IRF4 directly bound to the IRF7 promoter in both myeloma cell lines. When we overexpressed PU.1, IRF4 levels were decreased and the IRF4 binding to the IRF7 promoter was significantly reduced in those cell lines. Moreover, knockdown of IRF7 significantly rescued PU.1-expressing U266cells from apoptosis. These data strongly suggest that PU.1-induced apoptosis is associated with IRF4 down-regulation and subsequent IRF7 up-regulation in myeloma cells. Since IRF4 is essential transcription factor for myeloma cell survival, up-regulation of PU.1 by demethylation agents, including 5-aza-2'-deoxycytidine may serve as a promising therapeutic modality of multiple myeloma by inducing down-regulation of IRF4.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells Blood
doi_str_mv 10.1182/blood.v126.23.2957.2957
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjI5NTcuMjk1Nw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjI5NTcuMjk1Nw
institution DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
issn 0006-4971
1528-0020
issn_str_mv 0006-4971
1528-0020
language English
mega_collection American Society of Hematology (CrossRef)
match_str ueno2015pu1inducedirf4downregulationandsubsequentirf7upregulationinmyelomacells
publishDateSort 2015
publisher American Society of Hematology
recordtype ai
record_format ai
series Blood
source_id 49
title PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_unstemmed PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_full PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_fullStr PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_full_unstemmed PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_short PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_sort pu.1-induced irf4 down-regulation and subsequent irf7 up-regulation in myeloma cells
topic Cell Biology
Hematology
Immunology
Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.2957.2957
publishDate 2015
physical 2957-2957
description <jats:title>Abstract</jats:title> <jats:p>PU.1 is an Ets family transcription factor, which is necessary for differentiation of both myeloid and lymphoid lineages. It was previously reported that conditional knockout of the upstream regulatory element (URE) located in 14 kb 5' of the PU.1 gene resulted in down-regulation of PU.1 expression in granulocytes and B lymphocytes by 80% compared to that of wild type and induced acute myeloid leukemia and CLL-like diseases in mice. Since the URE contains a suppressor region for PU.1 expression in T cells, such mice express PU.1 in T cells and develop T cell lymphoma. Thus, the failure of proper expression of PU.1 in certain differentiation stages in certain cell lineages appears to result in hematological malignancies. We previously reported that PU.1 is down-regulated in various myeloma cell lines. In addition, PU.1 is expressed in normal plasma cells and PU.1 is down-regulated in myeloma cells of certain myeloma patients, who appear to have poor prognosis. In those myeloma cell lines, the promoter and URE of the PU.1 gene are highly methylated. A demethylation agent, 5-aza-2'-deoxycytidine, induced PU.1 up-regulation, growth arrest, and apoptosis in myeloma cell lines, KMS12PE and KHM11. In addition, conditionally expressed PU.1 induced cell growth arrest and apoptosis in PU.1-low-negative myeloma cell lines, U266 and KMS12PE, suggesting that PU.1 is a tumor suppressor for myeloma cells. To elucidate the mechanisms of the cell growth arrest and apoptosis in myeloma cells induced by PU.1, we performed DNA microarray analysis to compare gene expression levels before and after PU.1 expression. Among cell-cycle related genes, p21WAF1/CIP1 was found up-regulated in U266 cells, while among apoptosis related genes, TRAIL was highly up-regulated in both U266 and KMS12PE cell lines. With further investigation, we concluded that PU.1 directly transactivated the TRAIL gene in myeloma cells, leading to apoptosis.</jats:p> <jats:p>Based on the DNA microarray data generated, we found that IRF4 is downregulated in U266 myeloma cells after PU.1 induction. It has been reported that knockdown of IRF4 induces apoptosis in myeloma cell lines. Therefore, we examined whether IRF4 was down-regulated in three myeloma cell lines, U266, KMS12PE, and KHM11 following PU.1 induction. Conditional expression of PU.1 by tet-off system induced IRF4 down-regulation in U266and KMS12PE cells. With lentiviral transduction method, ectopic expression of PU.1 also induced IRF4 down-regulation, cell-cycle arrest, and apoptosis in KHM11 cells. To investigate the role of IRF4 in PU.1-expressing U266 cells, we stably expressed IRF4, partially rescuing U266 cells from apoptosis. IRF4 is known to directly bind to the IRF7 promoter and down-regulate IRF7 expression in activated B cell-like (ABC) subtype of diffuse large B-cell lymphoma cells. Therefore, we examined whether IRF4 bound to the IRF7 promoter in KMS12PEand U266cells using chromatin immunoprecipitation assays. We found that IRF4 directly bound to the IRF7 promoter in both myeloma cell lines. When we overexpressed PU.1, IRF4 levels were decreased and the IRF4 binding to the IRF7 promoter was significantly reduced in those cell lines. Moreover, knockdown of IRF7 significantly rescued PU.1-expressing U266cells from apoptosis. These data strongly suggest that PU.1-induced apoptosis is associated with IRF4 down-regulation and subsequent IRF7 up-regulation in myeloma cells. Since IRF4 is essential transcription factor for myeloma cell survival, up-regulation of PU.1 by demethylation agents, including 5-aza-2'-deoxycytidine may serve as a promising therapeutic modality of multiple myeloma by inducing down-regulation of IRF4.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
container_issue 23
container_start_page 2957
container_title Blood
container_volume 126
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792322768934535168
geogr_code not assigned
last_indexed 2024-03-01T11:23:08.887Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=PU.1-Induced+IRF4+Down-Regulation+and+Subsequent+IRF7+up-Regulation+in+Myeloma+Cells&rft.date=2015-12-03&genre=article&issn=1528-0020&volume=126&issue=23&spage=2957&epage=2957&pages=2957-2957&jtitle=Blood&atitle=PU.1-Induced+IRF4+Down-Regulation+and+Subsequent+IRF7+up-Regulation+in+Myeloma+Cells&aulast=Okuno&aufirst=Yutaka&rft_id=info%3Adoi%2F10.1182%2Fblood.v126.23.2957.2957&rft.language%5B0%5D=eng
SOLR
_version_ 1792322768934535168
author Ueno, Niina, Ueno, Shikiko, Endo, Shinya, Nishimura, Nao, Tatetsu, Hiro, Hirata, Shinya, Mitsuya, Hiroaki, Okuno, Yutaka
author_facet Ueno, Niina, Ueno, Shikiko, Endo, Shinya, Nishimura, Nao, Tatetsu, Hiro, Hirata, Shinya, Mitsuya, Hiroaki, Okuno, Yutaka, Ueno, Niina, Ueno, Shikiko, Endo, Shinya, Nishimura, Nao, Tatetsu, Hiro, Hirata, Shinya, Mitsuya, Hiroaki, Okuno, Yutaka
author_sort ueno, niina
container_issue 23
container_start_page 2957
container_title Blood
container_volume 126
description <jats:title>Abstract</jats:title> <jats:p>PU.1 is an Ets family transcription factor, which is necessary for differentiation of both myeloid and lymphoid lineages. It was previously reported that conditional knockout of the upstream regulatory element (URE) located in 14 kb 5' of the PU.1 gene resulted in down-regulation of PU.1 expression in granulocytes and B lymphocytes by 80% compared to that of wild type and induced acute myeloid leukemia and CLL-like diseases in mice. Since the URE contains a suppressor region for PU.1 expression in T cells, such mice express PU.1 in T cells and develop T cell lymphoma. Thus, the failure of proper expression of PU.1 in certain differentiation stages in certain cell lineages appears to result in hematological malignancies. We previously reported that PU.1 is down-regulated in various myeloma cell lines. In addition, PU.1 is expressed in normal plasma cells and PU.1 is down-regulated in myeloma cells of certain myeloma patients, who appear to have poor prognosis. In those myeloma cell lines, the promoter and URE of the PU.1 gene are highly methylated. A demethylation agent, 5-aza-2'-deoxycytidine, induced PU.1 up-regulation, growth arrest, and apoptosis in myeloma cell lines, KMS12PE and KHM11. In addition, conditionally expressed PU.1 induced cell growth arrest and apoptosis in PU.1-low-negative myeloma cell lines, U266 and KMS12PE, suggesting that PU.1 is a tumor suppressor for myeloma cells. To elucidate the mechanisms of the cell growth arrest and apoptosis in myeloma cells induced by PU.1, we performed DNA microarray analysis to compare gene expression levels before and after PU.1 expression. Among cell-cycle related genes, p21WAF1/CIP1 was found up-regulated in U266 cells, while among apoptosis related genes, TRAIL was highly up-regulated in both U266 and KMS12PE cell lines. With further investigation, we concluded that PU.1 directly transactivated the TRAIL gene in myeloma cells, leading to apoptosis.</jats:p> <jats:p>Based on the DNA microarray data generated, we found that IRF4 is downregulated in U266 myeloma cells after PU.1 induction. It has been reported that knockdown of IRF4 induces apoptosis in myeloma cell lines. Therefore, we examined whether IRF4 was down-regulated in three myeloma cell lines, U266, KMS12PE, and KHM11 following PU.1 induction. Conditional expression of PU.1 by tet-off system induced IRF4 down-regulation in U266and KMS12PE cells. With lentiviral transduction method, ectopic expression of PU.1 also induced IRF4 down-regulation, cell-cycle arrest, and apoptosis in KHM11 cells. To investigate the role of IRF4 in PU.1-expressing U266 cells, we stably expressed IRF4, partially rescuing U266 cells from apoptosis. IRF4 is known to directly bind to the IRF7 promoter and down-regulate IRF7 expression in activated B cell-like (ABC) subtype of diffuse large B-cell lymphoma cells. Therefore, we examined whether IRF4 bound to the IRF7 promoter in KMS12PEand U266cells using chromatin immunoprecipitation assays. We found that IRF4 directly bound to the IRF7 promoter in both myeloma cell lines. When we overexpressed PU.1, IRF4 levels were decreased and the IRF4 binding to the IRF7 promoter was significantly reduced in those cell lines. Moreover, knockdown of IRF7 significantly rescued PU.1-expressing U266cells from apoptosis. These data strongly suggest that PU.1-induced apoptosis is associated with IRF4 down-regulation and subsequent IRF7 up-regulation in myeloma cells. Since IRF4 is essential transcription factor for myeloma cell survival, up-regulation of PU.1 by demethylation agents, including 5-aza-2'-deoxycytidine may serve as a promising therapeutic modality of multiple myeloma by inducing down-regulation of IRF4.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
doi_str_mv 10.1182/blood.v126.23.2957.2957
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjI5NTcuMjk1Nw
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
institution DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275
issn 0006-4971, 1528-0020
issn_str_mv 0006-4971, 1528-0020
language English
last_indexed 2024-03-01T11:23:08.887Z
match_str ueno2015pu1inducedirf4downregulationandsubsequentirf7upregulationinmyelomacells
mega_collection American Society of Hematology (CrossRef)
physical 2957-2957
publishDate 2015
publishDateSort 2015
publisher American Society of Hematology
record_format ai
recordtype ai
series Blood
source_id 49
spelling Ueno, Niina Ueno, Shikiko Endo, Shinya Nishimura, Nao Tatetsu, Hiro Hirata, Shinya Mitsuya, Hiroaki Okuno, Yutaka 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.2957.2957 <jats:title>Abstract</jats:title> <jats:p>PU.1 is an Ets family transcription factor, which is necessary for differentiation of both myeloid and lymphoid lineages. It was previously reported that conditional knockout of the upstream regulatory element (URE) located in 14 kb 5' of the PU.1 gene resulted in down-regulation of PU.1 expression in granulocytes and B lymphocytes by 80% compared to that of wild type and induced acute myeloid leukemia and CLL-like diseases in mice. Since the URE contains a suppressor region for PU.1 expression in T cells, such mice express PU.1 in T cells and develop T cell lymphoma. Thus, the failure of proper expression of PU.1 in certain differentiation stages in certain cell lineages appears to result in hematological malignancies. We previously reported that PU.1 is down-regulated in various myeloma cell lines. In addition, PU.1 is expressed in normal plasma cells and PU.1 is down-regulated in myeloma cells of certain myeloma patients, who appear to have poor prognosis. In those myeloma cell lines, the promoter and URE of the PU.1 gene are highly methylated. A demethylation agent, 5-aza-2'-deoxycytidine, induced PU.1 up-regulation, growth arrest, and apoptosis in myeloma cell lines, KMS12PE and KHM11. In addition, conditionally expressed PU.1 induced cell growth arrest and apoptosis in PU.1-low-negative myeloma cell lines, U266 and KMS12PE, suggesting that PU.1 is a tumor suppressor for myeloma cells. To elucidate the mechanisms of the cell growth arrest and apoptosis in myeloma cells induced by PU.1, we performed DNA microarray analysis to compare gene expression levels before and after PU.1 expression. Among cell-cycle related genes, p21WAF1/CIP1 was found up-regulated in U266 cells, while among apoptosis related genes, TRAIL was highly up-regulated in both U266 and KMS12PE cell lines. With further investigation, we concluded that PU.1 directly transactivated the TRAIL gene in myeloma cells, leading to apoptosis.</jats:p> <jats:p>Based on the DNA microarray data generated, we found that IRF4 is downregulated in U266 myeloma cells after PU.1 induction. It has been reported that knockdown of IRF4 induces apoptosis in myeloma cell lines. Therefore, we examined whether IRF4 was down-regulated in three myeloma cell lines, U266, KMS12PE, and KHM11 following PU.1 induction. Conditional expression of PU.1 by tet-off system induced IRF4 down-regulation in U266and KMS12PE cells. With lentiviral transduction method, ectopic expression of PU.1 also induced IRF4 down-regulation, cell-cycle arrest, and apoptosis in KHM11 cells. To investigate the role of IRF4 in PU.1-expressing U266 cells, we stably expressed IRF4, partially rescuing U266 cells from apoptosis. IRF4 is known to directly bind to the IRF7 promoter and down-regulate IRF7 expression in activated B cell-like (ABC) subtype of diffuse large B-cell lymphoma cells. Therefore, we examined whether IRF4 bound to the IRF7 promoter in KMS12PEand U266cells using chromatin immunoprecipitation assays. We found that IRF4 directly bound to the IRF7 promoter in both myeloma cell lines. When we overexpressed PU.1, IRF4 levels were decreased and the IRF4 binding to the IRF7 promoter was significantly reduced in those cell lines. Moreover, knockdown of IRF7 significantly rescued PU.1-expressing U266cells from apoptosis. These data strongly suggest that PU.1-induced apoptosis is associated with IRF4 down-regulation and subsequent IRF7 up-regulation in myeloma cells. Since IRF4 is essential transcription factor for myeloma cell survival, up-regulation of PU.1 by demethylation agents, including 5-aza-2'-deoxycytidine may serve as a promising therapeutic modality of multiple myeloma by inducing down-regulation of IRF4.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells Blood
spellingShingle Ueno, Niina, Ueno, Shikiko, Endo, Shinya, Nishimura, Nao, Tatetsu, Hiro, Hirata, Shinya, Mitsuya, Hiroaki, Okuno, Yutaka, Blood, PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells, Cell Biology, Hematology, Immunology, Biochemistry
title PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_full PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_fullStr PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_full_unstemmed PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_short PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
title_sort pu.1-induced irf4 down-regulation and subsequent irf7 up-regulation in myeloma cells
title_unstemmed PU.1-Induced IRF4 Down-Regulation and Subsequent IRF7 up-Regulation in Myeloma Cells
topic Cell Biology, Hematology, Immunology, Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.2957.2957