author_facet Triviai, Ioanna N
Zeschke, Silke
Spanakis, Marios
Stocking, Carol
Kroeger, Nicolaus
Triviai, Ioanna N
Zeschke, Silke
Spanakis, Marios
Stocking, Carol
Kroeger, Nicolaus
author Triviai, Ioanna N
Zeschke, Silke
Spanakis, Marios
Stocking, Carol
Kroeger, Nicolaus
spellingShingle Triviai, Ioanna N
Zeschke, Silke
Spanakis, Marios
Stocking, Carol
Kroeger, Nicolaus
Blood
Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
Cell Biology
Hematology
Immunology
Biochemistry
author_sort triviai, ioanna n
spelling Triviai, Ioanna N Zeschke, Silke Spanakis, Marios Stocking, Carol Kroeger, Nicolaus 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.1629.1629 <jats:title>Abstract</jats:title> <jats:p>Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by abnormal differentiation of erythroid-megakaryocytic lineages and expansion of the granulo/monocytic lineage. Accumulation of aberrant myeloid precursors dominates the chronic phase of PMF leading to fibrosis development or leukemic transformation. Recent reports describe that mutation order dictates the prevalence of distinct erythroid subclones in MPN, or that clonality of whole blood mononuclear cells is related to worse prognosis and leukemic transformation. The mutational variability of the stem cell pool determining either the expansion of independent clones dominating chronic phase PMF or the propagation of pre-leukemic progenitors has not been resolved.</jats:p> <jats:p>In our previous studies, we characterized a CD133+ HSC population exhibiting multilineage differentiation capacity in vitro that drives PMF disease and leukemic transformation in a xenotransplantation mouse model. Molecular analysis of PMF-patient derived HSC indicated variability in their mutational burden, which was reflected in their engraftment capacity and disease induction in vivo. Our goal is to determine the genetic lesions within the HSC pool in PMF that determine aberrant myeloid differentiation in the chronic phase or are responsible for blast transformation.</jats:p> <jats:p>CD133+ HSCs from 15 PMF patients were molecularly characterized for the known mutations in MPN by whole exon sequencing. Sorted HSC cells were functionally analyzed at a single cell level for variable myeloid colony formation. 2230 colonies were phenotypically characterized and isolated. Analysis of the PMF HSC clonogenic potential indicates that the presence of mutations in the epigenetic regulator EZH2 correlates with granulo/monocytic differentiation but limited erythroid colony formation potential (0-0,05%), as determined in three different patient samples (2 JAK2-V617F+, 1 CALR-fs*+). Transplantation of these patient samples gave the highest engraftment in our mouse model and in one case, EZH2mu JAK2wt leukemic transformation.</jats:p> <jats:p>CD133+ HSC-derived single colony analysis from this patient indicated that there are 6 different genotypic clones of HSC, which exhibit variable granulo/monocytic differentiation capacity in vitro. From a total of 569 formed colonies, 538 were CFU-GM,-G,-M and 31 BFU-E. PCR analysis of colonies for JAK2-V617F and Sanger sequencing for EZH2-D265H indicates that the presence of JAK2-V617F in hetero- or homozygosity can occur in the EZH2-D265H background without influencing the granulo/monocytic commitment of these mutated HSCs. Interestingly, the limited BFU-Es that arose contained only single JAK2-V617F mutations in the same patient. Moreover, the presence of single EZH2-D265H heterozygous clones, single JAK2-V617F hetero- or homozygous clones, as well as double mutated clones indicate two independent mutational events affecting the same locus and nucleotide have occurred in this patient. In view of the overall high frequency of JAK2-V617F mutations, we predict that the EZH2 mutation was the first mutation in double mutant clones in this patient. Taken together, we show for the first time that JAK2-V617F mutation can occur in independent HSC clones in PMF that exhibit distinctive differentiation potential. Taken into account that AML occurred in vivo from a EZH2mu JAK2wt clone, our studies indicate that JAK2 and CALR mutations sustain the progeny of the chronic phase PMF, while EZH2 mutations might precede those of JAK2 and shape the genomic landscape that supports the expansion of pre-leukemic clones.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis Blood
doi_str_mv 10.1182/blood.v126.23.1629.1629
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjE2MjkuMTYyOQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjE2MjkuMTYyOQ
institution DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
issn 0006-4971
1528-0020
issn_str_mv 0006-4971
1528-0020
language English
mega_collection American Society of Hematology (CrossRef)
match_str triviai2015genetichscvariabilitydeterminesthedriversofchronicandacutephasesofprimarymyelofibrosis
publishDateSort 2015
publisher American Society of Hematology
recordtype ai
record_format ai
series Blood
source_id 49
title Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_unstemmed Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_full Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_fullStr Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_full_unstemmed Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_short Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_sort genetic hsc variability determines the drivers of chronic and acute phases of primary myelofibrosis
topic Cell Biology
Hematology
Immunology
Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.1629.1629
publishDate 2015
physical 1629-1629
description <jats:title>Abstract</jats:title> <jats:p>Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by abnormal differentiation of erythroid-megakaryocytic lineages and expansion of the granulo/monocytic lineage. Accumulation of aberrant myeloid precursors dominates the chronic phase of PMF leading to fibrosis development or leukemic transformation. Recent reports describe that mutation order dictates the prevalence of distinct erythroid subclones in MPN, or that clonality of whole blood mononuclear cells is related to worse prognosis and leukemic transformation. The mutational variability of the stem cell pool determining either the expansion of independent clones dominating chronic phase PMF or the propagation of pre-leukemic progenitors has not been resolved.</jats:p> <jats:p>In our previous studies, we characterized a CD133+ HSC population exhibiting multilineage differentiation capacity in vitro that drives PMF disease and leukemic transformation in a xenotransplantation mouse model. Molecular analysis of PMF-patient derived HSC indicated variability in their mutational burden, which was reflected in their engraftment capacity and disease induction in vivo. Our goal is to determine the genetic lesions within the HSC pool in PMF that determine aberrant myeloid differentiation in the chronic phase or are responsible for blast transformation.</jats:p> <jats:p>CD133+ HSCs from 15 PMF patients were molecularly characterized for the known mutations in MPN by whole exon sequencing. Sorted HSC cells were functionally analyzed at a single cell level for variable myeloid colony formation. 2230 colonies were phenotypically characterized and isolated. Analysis of the PMF HSC clonogenic potential indicates that the presence of mutations in the epigenetic regulator EZH2 correlates with granulo/monocytic differentiation but limited erythroid colony formation potential (0-0,05%), as determined in three different patient samples (2 JAK2-V617F+, 1 CALR-fs*+). Transplantation of these patient samples gave the highest engraftment in our mouse model and in one case, EZH2mu JAK2wt leukemic transformation.</jats:p> <jats:p>CD133+ HSC-derived single colony analysis from this patient indicated that there are 6 different genotypic clones of HSC, which exhibit variable granulo/monocytic differentiation capacity in vitro. From a total of 569 formed colonies, 538 were CFU-GM,-G,-M and 31 BFU-E. PCR analysis of colonies for JAK2-V617F and Sanger sequencing for EZH2-D265H indicates that the presence of JAK2-V617F in hetero- or homozygosity can occur in the EZH2-D265H background without influencing the granulo/monocytic commitment of these mutated HSCs. Interestingly, the limited BFU-Es that arose contained only single JAK2-V617F mutations in the same patient. Moreover, the presence of single EZH2-D265H heterozygous clones, single JAK2-V617F hetero- or homozygous clones, as well as double mutated clones indicate two independent mutational events affecting the same locus and nucleotide have occurred in this patient. In view of the overall high frequency of JAK2-V617F mutations, we predict that the EZH2 mutation was the first mutation in double mutant clones in this patient. Taken together, we show for the first time that JAK2-V617F mutation can occur in independent HSC clones in PMF that exhibit distinctive differentiation potential. Taken into account that AML occurred in vivo from a EZH2mu JAK2wt clone, our studies indicate that JAK2 and CALR mutations sustain the progeny of the chronic phase PMF, while EZH2 mutations might precede those of JAK2 and shape the genomic landscape that supports the expansion of pre-leukemic clones.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
container_issue 23
container_start_page 1629
container_title Blood
container_volume 126
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792327014221348866
geogr_code not assigned
last_indexed 2024-03-01T12:30:39.269Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Genetic+HSC+Variability+Determines+the+Drivers+of+Chronic+and+Acute+Phases+of+Primary+Myelofibrosis&rft.date=2015-12-03&genre=article&issn=1528-0020&volume=126&issue=23&spage=1629&epage=1629&pages=1629-1629&jtitle=Blood&atitle=Genetic+HSC+Variability+Determines+the+Drivers+of+Chronic+and+Acute+Phases+of+Primary+Myelofibrosis&aulast=Kroeger&aufirst=Nicolaus&rft_id=info%3Adoi%2F10.1182%2Fblood.v126.23.1629.1629&rft.language%5B0%5D=eng
SOLR
_version_ 1792327014221348866
author Triviai, Ioanna N, Zeschke, Silke, Spanakis, Marios, Stocking, Carol, Kroeger, Nicolaus
author_facet Triviai, Ioanna N, Zeschke, Silke, Spanakis, Marios, Stocking, Carol, Kroeger, Nicolaus, Triviai, Ioanna N, Zeschke, Silke, Spanakis, Marios, Stocking, Carol, Kroeger, Nicolaus
author_sort triviai, ioanna n
container_issue 23
container_start_page 1629
container_title Blood
container_volume 126
description <jats:title>Abstract</jats:title> <jats:p>Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by abnormal differentiation of erythroid-megakaryocytic lineages and expansion of the granulo/monocytic lineage. Accumulation of aberrant myeloid precursors dominates the chronic phase of PMF leading to fibrosis development or leukemic transformation. Recent reports describe that mutation order dictates the prevalence of distinct erythroid subclones in MPN, or that clonality of whole blood mononuclear cells is related to worse prognosis and leukemic transformation. The mutational variability of the stem cell pool determining either the expansion of independent clones dominating chronic phase PMF or the propagation of pre-leukemic progenitors has not been resolved.</jats:p> <jats:p>In our previous studies, we characterized a CD133+ HSC population exhibiting multilineage differentiation capacity in vitro that drives PMF disease and leukemic transformation in a xenotransplantation mouse model. Molecular analysis of PMF-patient derived HSC indicated variability in their mutational burden, which was reflected in their engraftment capacity and disease induction in vivo. Our goal is to determine the genetic lesions within the HSC pool in PMF that determine aberrant myeloid differentiation in the chronic phase or are responsible for blast transformation.</jats:p> <jats:p>CD133+ HSCs from 15 PMF patients were molecularly characterized for the known mutations in MPN by whole exon sequencing. Sorted HSC cells were functionally analyzed at a single cell level for variable myeloid colony formation. 2230 colonies were phenotypically characterized and isolated. Analysis of the PMF HSC clonogenic potential indicates that the presence of mutations in the epigenetic regulator EZH2 correlates with granulo/monocytic differentiation but limited erythroid colony formation potential (0-0,05%), as determined in three different patient samples (2 JAK2-V617F+, 1 CALR-fs*+). Transplantation of these patient samples gave the highest engraftment in our mouse model and in one case, EZH2mu JAK2wt leukemic transformation.</jats:p> <jats:p>CD133+ HSC-derived single colony analysis from this patient indicated that there are 6 different genotypic clones of HSC, which exhibit variable granulo/monocytic differentiation capacity in vitro. From a total of 569 formed colonies, 538 were CFU-GM,-G,-M and 31 BFU-E. PCR analysis of colonies for JAK2-V617F and Sanger sequencing for EZH2-D265H indicates that the presence of JAK2-V617F in hetero- or homozygosity can occur in the EZH2-D265H background without influencing the granulo/monocytic commitment of these mutated HSCs. Interestingly, the limited BFU-Es that arose contained only single JAK2-V617F mutations in the same patient. Moreover, the presence of single EZH2-D265H heterozygous clones, single JAK2-V617F hetero- or homozygous clones, as well as double mutated clones indicate two independent mutational events affecting the same locus and nucleotide have occurred in this patient. In view of the overall high frequency of JAK2-V617F mutations, we predict that the EZH2 mutation was the first mutation in double mutant clones in this patient. Taken together, we show for the first time that JAK2-V617F mutation can occur in independent HSC clones in PMF that exhibit distinctive differentiation potential. Taken into account that AML occurred in vivo from a EZH2mu JAK2wt clone, our studies indicate that JAK2 and CALR mutations sustain the progeny of the chronic phase PMF, while EZH2 mutations might precede those of JAK2 and shape the genomic landscape that supports the expansion of pre-leukemic clones.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
doi_str_mv 10.1182/blood.v126.23.1629.1629
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjE2MjkuMTYyOQ
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
institution DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4
issn 0006-4971, 1528-0020
issn_str_mv 0006-4971, 1528-0020
language English
last_indexed 2024-03-01T12:30:39.269Z
match_str triviai2015genetichscvariabilitydeterminesthedriversofchronicandacutephasesofprimarymyelofibrosis
mega_collection American Society of Hematology (CrossRef)
physical 1629-1629
publishDate 2015
publishDateSort 2015
publisher American Society of Hematology
record_format ai
recordtype ai
series Blood
source_id 49
spelling Triviai, Ioanna N Zeschke, Silke Spanakis, Marios Stocking, Carol Kroeger, Nicolaus 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.1629.1629 <jats:title>Abstract</jats:title> <jats:p>Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by abnormal differentiation of erythroid-megakaryocytic lineages and expansion of the granulo/monocytic lineage. Accumulation of aberrant myeloid precursors dominates the chronic phase of PMF leading to fibrosis development or leukemic transformation. Recent reports describe that mutation order dictates the prevalence of distinct erythroid subclones in MPN, or that clonality of whole blood mononuclear cells is related to worse prognosis and leukemic transformation. The mutational variability of the stem cell pool determining either the expansion of independent clones dominating chronic phase PMF or the propagation of pre-leukemic progenitors has not been resolved.</jats:p> <jats:p>In our previous studies, we characterized a CD133+ HSC population exhibiting multilineage differentiation capacity in vitro that drives PMF disease and leukemic transformation in a xenotransplantation mouse model. Molecular analysis of PMF-patient derived HSC indicated variability in their mutational burden, which was reflected in their engraftment capacity and disease induction in vivo. Our goal is to determine the genetic lesions within the HSC pool in PMF that determine aberrant myeloid differentiation in the chronic phase or are responsible for blast transformation.</jats:p> <jats:p>CD133+ HSCs from 15 PMF patients were molecularly characterized for the known mutations in MPN by whole exon sequencing. Sorted HSC cells were functionally analyzed at a single cell level for variable myeloid colony formation. 2230 colonies were phenotypically characterized and isolated. Analysis of the PMF HSC clonogenic potential indicates that the presence of mutations in the epigenetic regulator EZH2 correlates with granulo/monocytic differentiation but limited erythroid colony formation potential (0-0,05%), as determined in three different patient samples (2 JAK2-V617F+, 1 CALR-fs*+). Transplantation of these patient samples gave the highest engraftment in our mouse model and in one case, EZH2mu JAK2wt leukemic transformation.</jats:p> <jats:p>CD133+ HSC-derived single colony analysis from this patient indicated that there are 6 different genotypic clones of HSC, which exhibit variable granulo/monocytic differentiation capacity in vitro. From a total of 569 formed colonies, 538 were CFU-GM,-G,-M and 31 BFU-E. PCR analysis of colonies for JAK2-V617F and Sanger sequencing for EZH2-D265H indicates that the presence of JAK2-V617F in hetero- or homozygosity can occur in the EZH2-D265H background without influencing the granulo/monocytic commitment of these mutated HSCs. Interestingly, the limited BFU-Es that arose contained only single JAK2-V617F mutations in the same patient. Moreover, the presence of single EZH2-D265H heterozygous clones, single JAK2-V617F hetero- or homozygous clones, as well as double mutated clones indicate two independent mutational events affecting the same locus and nucleotide have occurred in this patient. In view of the overall high frequency of JAK2-V617F mutations, we predict that the EZH2 mutation was the first mutation in double mutant clones in this patient. Taken together, we show for the first time that JAK2-V617F mutation can occur in independent HSC clones in PMF that exhibit distinctive differentiation potential. Taken into account that AML occurred in vivo from a EZH2mu JAK2wt clone, our studies indicate that JAK2 and CALR mutations sustain the progeny of the chronic phase PMF, while EZH2 mutations might precede those of JAK2 and shape the genomic landscape that supports the expansion of pre-leukemic clones.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis Blood
spellingShingle Triviai, Ioanna N, Zeschke, Silke, Spanakis, Marios, Stocking, Carol, Kroeger, Nicolaus, Blood, Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis, Cell Biology, Hematology, Immunology, Biochemistry
title Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_full Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_fullStr Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_full_unstemmed Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_short Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
title_sort genetic hsc variability determines the drivers of chronic and acute phases of primary myelofibrosis
title_unstemmed Genetic HSC Variability Determines the Drivers of Chronic and Acute Phases of Primary Myelofibrosis
topic Cell Biology, Hematology, Immunology, Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.1629.1629