author_facet Protat, Alain
Rauniyar, Surendra
Delanoë, Julien
Fontaine, Emmanuel
Schwarzenboeck, Alfons
Protat, Alain
Rauniyar, Surendra
Delanoë, Julien
Fontaine, Emmanuel
Schwarzenboeck, Alfons
author Protat, Alain
Rauniyar, Surendra
Delanoë, Julien
Fontaine, Emmanuel
Schwarzenboeck, Alfons
spellingShingle Protat, Alain
Rauniyar, Surendra
Delanoë, Julien
Fontaine, Emmanuel
Schwarzenboeck, Alfons
Journal of Atmospheric and Oceanic Technology
W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
Atmospheric Science
Ocean Engineering
author_sort protat, alain
spelling Protat, Alain Rauniyar, Surendra Delanoë, Julien Fontaine, Emmanuel Schwarzenboeck, Alfons 0739-0572 1520-0426 American Meteorological Society Atmospheric Science Ocean Engineering http://dx.doi.org/10.1175/jtech-d-18-0154.1 <jats:title>Abstract</jats:title><jats:p>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km<jats:sup>−1</jats:sup> for reflectivities between 13 and 18 dB<jats:italic>Z</jats:italic>, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km<jats:sup>−1</jats:sup> for reflectivities of 20 dB<jats:italic>Z</jats:italic>. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m<jats:sup>−3</jats:sup> up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</jats:p> W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils Journal of Atmospheric and Oceanic Technology
doi_str_mv 10.1175/jtech-d-18-0154.1
facet_avail Online
Free
finc_class_facet Physik
Allgemeine Naturwissenschaft
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qdGVjaC1kLTE4LTAxNTQuMQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qdGVjaC1kLTE4LTAxNTQuMQ
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
imprint American Meteorological Society, 2019
imprint_str_mv American Meteorological Society, 2019
issn 0739-0572
1520-0426
issn_str_mv 0739-0572
1520-0426
language Undetermined
mega_collection American Meteorological Society (CrossRef)
match_str protat2019wband95ghzradarattenuationintropicalstratiformiceanvils
publishDateSort 2019
publisher American Meteorological Society
recordtype ai
record_format ai
series Journal of Atmospheric and Oceanic Technology
source_id 49
title W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_unstemmed W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_full W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_fullStr W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_full_unstemmed W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_short W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_sort w-band (95 ghz) radar attenuation in tropical stratiform ice anvils
topic Atmospheric Science
Ocean Engineering
url http://dx.doi.org/10.1175/jtech-d-18-0154.1
publishDate 2019
physical 1463-1476
description <jats:title>Abstract</jats:title><jats:p>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km<jats:sup>−1</jats:sup> for reflectivities between 13 and 18 dB<jats:italic>Z</jats:italic>, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km<jats:sup>−1</jats:sup> for reflectivities of 20 dB<jats:italic>Z</jats:italic>. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m<jats:sup>−3</jats:sup> up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</jats:p>
container_issue 8
container_start_page 1463
container_title Journal of Atmospheric and Oceanic Technology
container_volume 36
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792342891739217928
geogr_code not assigned
last_indexed 2024-03-01T16:42:45.087Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=W-Band+%2895+GHz%29+Radar+Attenuation+in+Tropical+Stratiform+Ice+Anvils&rft.date=2019-08-01&genre=article&issn=1520-0426&volume=36&issue=8&spage=1463&epage=1476&pages=1463-1476&jtitle=Journal+of+Atmospheric+and+Oceanic+Technology&atitle=W-Band+%2895+GHz%29+Radar+Attenuation+in+Tropical+Stratiform+Ice+Anvils&aulast=Schwarzenboeck&aufirst=Alfons&rft_id=info%3Adoi%2F10.1175%2Fjtech-d-18-0154.1&rft.language%5B0%5D=und
SOLR
_version_ 1792342891739217928
author Protat, Alain, Rauniyar, Surendra, Delanoë, Julien, Fontaine, Emmanuel, Schwarzenboeck, Alfons
author_facet Protat, Alain, Rauniyar, Surendra, Delanoë, Julien, Fontaine, Emmanuel, Schwarzenboeck, Alfons, Protat, Alain, Rauniyar, Surendra, Delanoë, Julien, Fontaine, Emmanuel, Schwarzenboeck, Alfons
author_sort protat, alain
container_issue 8
container_start_page 1463
container_title Journal of Atmospheric and Oceanic Technology
container_volume 36
description <jats:title>Abstract</jats:title><jats:p>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km<jats:sup>−1</jats:sup> for reflectivities between 13 and 18 dB<jats:italic>Z</jats:italic>, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km<jats:sup>−1</jats:sup> for reflectivities of 20 dB<jats:italic>Z</jats:italic>. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m<jats:sup>−3</jats:sup> up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</jats:p>
doi_str_mv 10.1175/jtech-d-18-0154.1
facet_avail Online, Free
finc_class_facet Physik, Allgemeine Naturwissenschaft
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qdGVjaC1kLTE4LTAxNTQuMQ
imprint American Meteorological Society, 2019
imprint_str_mv American Meteorological Society, 2019
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229
issn 0739-0572, 1520-0426
issn_str_mv 0739-0572, 1520-0426
language Undetermined
last_indexed 2024-03-01T16:42:45.087Z
match_str protat2019wband95ghzradarattenuationintropicalstratiformiceanvils
mega_collection American Meteorological Society (CrossRef)
physical 1463-1476
publishDate 2019
publishDateSort 2019
publisher American Meteorological Society
record_format ai
recordtype ai
series Journal of Atmospheric and Oceanic Technology
source_id 49
spelling Protat, Alain Rauniyar, Surendra Delanoë, Julien Fontaine, Emmanuel Schwarzenboeck, Alfons 0739-0572 1520-0426 American Meteorological Society Atmospheric Science Ocean Engineering http://dx.doi.org/10.1175/jtech-d-18-0154.1 <jats:title>Abstract</jats:title><jats:p>Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km<jats:sup>−1</jats:sup> for reflectivities between 13 and 18 dB<jats:italic>Z</jats:italic>, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km<jats:sup>−1</jats:sup> for reflectivities of 20 dB<jats:italic>Z</jats:italic>. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m<jats:sup>−3</jats:sup> up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.</jats:p> W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils Journal of Atmospheric and Oceanic Technology
spellingShingle Protat, Alain, Rauniyar, Surendra, Delanoë, Julien, Fontaine, Emmanuel, Schwarzenboeck, Alfons, Journal of Atmospheric and Oceanic Technology, W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils, Atmospheric Science, Ocean Engineering
title W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_full W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_fullStr W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_full_unstemmed W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_short W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
title_sort w-band (95 ghz) radar attenuation in tropical stratiform ice anvils
title_unstemmed W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils
topic Atmospheric Science, Ocean Engineering
url http://dx.doi.org/10.1175/jtech-d-18-0154.1