author_facet Dauhajre, Daniel P.
McWilliams, James C.
Dauhajre, Daniel P.
McWilliams, James C.
author Dauhajre, Daniel P.
McWilliams, James C.
spellingShingle Dauhajre, Daniel P.
McWilliams, James C.
Journal of Physical Oceanography
Diurnal Evolution of Submesoscale Front and Filament Circulations
Oceanography
author_sort dauhajre, daniel p.
spelling Dauhajre, Daniel P. McWilliams, James C. 0022-3670 1520-0485 American Meteorological Society Oceanography http://dx.doi.org/10.1175/jpo-d-18-0143.1 <jats:title>Abstract</jats:title><jats:p>The local circulation of submesoscale fronts and filaments can be partly understood through a horizontal momentum balance of Coriolis, a horizontal pressure gradient, and vertical diffusivity in a turbulent boundary layer, known as the turbulent thermal wind balance (TTW or T<jats:sup>2</jats:sup>W). T<jats:sup>2</jats:sup>W often reproduces the instantaneous relative vorticity and divergence of submesoscale circulations in open-ocean and shelf settings. However, a diurnal cycle in submesoscale vorticity and divergence is characterized by a non-T<jats:sup>2</jats:sup>W phasing: a maximum in divergence magnitude lags the maximum in vertical diffusivity (with vorticity lagging divergence). Here, an idealized model is used to solve the transient turbulent thermal wind (T<jats:sup>3</jats:sup>W) equations and to investigate the diurnal evolution of front and filament circulation in a 2D plane. Relative to a steady-state circulation, transient evolution can cause both instantaneous strengthening and a weaker diurnal average of the secondary circulation. The primary mechanisms controlling the diurnal variability exist in a 1D Ekman layer that imprints onto the 2D circulation. In midlatitudes, acceleration during separate phases of the diurnal cycle (from night to day and from day to night) is dominated by distinct inertial oscillation and vertically diffusive mechanisms, respectively. However, the manifestation of these dual accelerations is sensitive to latitude, boundary layer depth, and the strength of the forcing. A simple 1D model predicts the diurnal phasing of submesoscale divergence and vorticity in realistic primitive equation simulations of the southwestern Pacific and coastal California.</jats:p> Diurnal Evolution of Submesoscale Front and Filament Circulations Journal of Physical Oceanography
doi_str_mv 10.1175/jpo-d-18-0143.1
facet_avail Online
Free
finc_class_facet Allgemeine Naturwissenschaft
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMTQzLjE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMTQzLjE
institution DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint American Meteorological Society, 2018
imprint_str_mv American Meteorological Society, 2018
issn 1520-0485
0022-3670
issn_str_mv 1520-0485
0022-3670
language Undetermined
mega_collection American Meteorological Society (CrossRef)
match_str dauhajre2018diurnalevolutionofsubmesoscalefrontandfilamentcirculations
publishDateSort 2018
publisher American Meteorological Society
recordtype ai
record_format ai
series Journal of Physical Oceanography
source_id 49
title Diurnal Evolution of Submesoscale Front and Filament Circulations
title_unstemmed Diurnal Evolution of Submesoscale Front and Filament Circulations
title_full Diurnal Evolution of Submesoscale Front and Filament Circulations
title_fullStr Diurnal Evolution of Submesoscale Front and Filament Circulations
title_full_unstemmed Diurnal Evolution of Submesoscale Front and Filament Circulations
title_short Diurnal Evolution of Submesoscale Front and Filament Circulations
title_sort diurnal evolution of submesoscale front and filament circulations
topic Oceanography
url http://dx.doi.org/10.1175/jpo-d-18-0143.1
publishDate 2018
physical 2343-2361
description <jats:title>Abstract</jats:title><jats:p>The local circulation of submesoscale fronts and filaments can be partly understood through a horizontal momentum balance of Coriolis, a horizontal pressure gradient, and vertical diffusivity in a turbulent boundary layer, known as the turbulent thermal wind balance (TTW or T<jats:sup>2</jats:sup>W). T<jats:sup>2</jats:sup>W often reproduces the instantaneous relative vorticity and divergence of submesoscale circulations in open-ocean and shelf settings. However, a diurnal cycle in submesoscale vorticity and divergence is characterized by a non-T<jats:sup>2</jats:sup>W phasing: a maximum in divergence magnitude lags the maximum in vertical diffusivity (with vorticity lagging divergence). Here, an idealized model is used to solve the transient turbulent thermal wind (T<jats:sup>3</jats:sup>W) equations and to investigate the diurnal evolution of front and filament circulation in a 2D plane. Relative to a steady-state circulation, transient evolution can cause both instantaneous strengthening and a weaker diurnal average of the secondary circulation. The primary mechanisms controlling the diurnal variability exist in a 1D Ekman layer that imprints onto the 2D circulation. In midlatitudes, acceleration during separate phases of the diurnal cycle (from night to day and from day to night) is dominated by distinct inertial oscillation and vertically diffusive mechanisms, respectively. However, the manifestation of these dual accelerations is sensitive to latitude, boundary layer depth, and the strength of the forcing. A simple 1D model predicts the diurnal phasing of submesoscale divergence and vorticity in realistic primitive equation simulations of the southwestern Pacific and coastal California.</jats:p>
container_issue 10
container_start_page 2343
container_title Journal of Physical Oceanography
container_volume 48
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792338572086345730
geogr_code not assigned
last_indexed 2024-03-01T15:34:00.828Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Diurnal+Evolution+of+Submesoscale+Front+and+Filament+Circulations&rft.date=2018-10-01&genre=article&issn=1520-0485&volume=48&issue=10&spage=2343&epage=2361&pages=2343-2361&jtitle=Journal+of+Physical+Oceanography&atitle=Diurnal+Evolution+of+Submesoscale+Front+and+Filament+Circulations&aulast=McWilliams&aufirst=James+C.&rft_id=info%3Adoi%2F10.1175%2Fjpo-d-18-0143.1&rft.language%5B0%5D=und
SOLR
_version_ 1792338572086345730
author Dauhajre, Daniel P., McWilliams, James C.
author_facet Dauhajre, Daniel P., McWilliams, James C., Dauhajre, Daniel P., McWilliams, James C.
author_sort dauhajre, daniel p.
container_issue 10
container_start_page 2343
container_title Journal of Physical Oceanography
container_volume 48
description <jats:title>Abstract</jats:title><jats:p>The local circulation of submesoscale fronts and filaments can be partly understood through a horizontal momentum balance of Coriolis, a horizontal pressure gradient, and vertical diffusivity in a turbulent boundary layer, known as the turbulent thermal wind balance (TTW or T<jats:sup>2</jats:sup>W). T<jats:sup>2</jats:sup>W often reproduces the instantaneous relative vorticity and divergence of submesoscale circulations in open-ocean and shelf settings. However, a diurnal cycle in submesoscale vorticity and divergence is characterized by a non-T<jats:sup>2</jats:sup>W phasing: a maximum in divergence magnitude lags the maximum in vertical diffusivity (with vorticity lagging divergence). Here, an idealized model is used to solve the transient turbulent thermal wind (T<jats:sup>3</jats:sup>W) equations and to investigate the diurnal evolution of front and filament circulation in a 2D plane. Relative to a steady-state circulation, transient evolution can cause both instantaneous strengthening and a weaker diurnal average of the secondary circulation. The primary mechanisms controlling the diurnal variability exist in a 1D Ekman layer that imprints onto the 2D circulation. In midlatitudes, acceleration during separate phases of the diurnal cycle (from night to day and from day to night) is dominated by distinct inertial oscillation and vertically diffusive mechanisms, respectively. However, the manifestation of these dual accelerations is sensitive to latitude, boundary layer depth, and the strength of the forcing. A simple 1D model predicts the diurnal phasing of submesoscale divergence and vorticity in realistic primitive equation simulations of the southwestern Pacific and coastal California.</jats:p>
doi_str_mv 10.1175/jpo-d-18-0143.1
facet_avail Online, Free
finc_class_facet Allgemeine Naturwissenschaft
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMTQzLjE
imprint American Meteorological Society, 2018
imprint_str_mv American Meteorological Society, 2018
institution DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 1520-0485, 0022-3670
issn_str_mv 1520-0485, 0022-3670
language Undetermined
last_indexed 2024-03-01T15:34:00.828Z
match_str dauhajre2018diurnalevolutionofsubmesoscalefrontandfilamentcirculations
mega_collection American Meteorological Society (CrossRef)
physical 2343-2361
publishDate 2018
publishDateSort 2018
publisher American Meteorological Society
record_format ai
recordtype ai
series Journal of Physical Oceanography
source_id 49
spelling Dauhajre, Daniel P. McWilliams, James C. 0022-3670 1520-0485 American Meteorological Society Oceanography http://dx.doi.org/10.1175/jpo-d-18-0143.1 <jats:title>Abstract</jats:title><jats:p>The local circulation of submesoscale fronts and filaments can be partly understood through a horizontal momentum balance of Coriolis, a horizontal pressure gradient, and vertical diffusivity in a turbulent boundary layer, known as the turbulent thermal wind balance (TTW or T<jats:sup>2</jats:sup>W). T<jats:sup>2</jats:sup>W often reproduces the instantaneous relative vorticity and divergence of submesoscale circulations in open-ocean and shelf settings. However, a diurnal cycle in submesoscale vorticity and divergence is characterized by a non-T<jats:sup>2</jats:sup>W phasing: a maximum in divergence magnitude lags the maximum in vertical diffusivity (with vorticity lagging divergence). Here, an idealized model is used to solve the transient turbulent thermal wind (T<jats:sup>3</jats:sup>W) equations and to investigate the diurnal evolution of front and filament circulation in a 2D plane. Relative to a steady-state circulation, transient evolution can cause both instantaneous strengthening and a weaker diurnal average of the secondary circulation. The primary mechanisms controlling the diurnal variability exist in a 1D Ekman layer that imprints onto the 2D circulation. In midlatitudes, acceleration during separate phases of the diurnal cycle (from night to day and from day to night) is dominated by distinct inertial oscillation and vertically diffusive mechanisms, respectively. However, the manifestation of these dual accelerations is sensitive to latitude, boundary layer depth, and the strength of the forcing. A simple 1D model predicts the diurnal phasing of submesoscale divergence and vorticity in realistic primitive equation simulations of the southwestern Pacific and coastal California.</jats:p> Diurnal Evolution of Submesoscale Front and Filament Circulations Journal of Physical Oceanography
spellingShingle Dauhajre, Daniel P., McWilliams, James C., Journal of Physical Oceanography, Diurnal Evolution of Submesoscale Front and Filament Circulations, Oceanography
title Diurnal Evolution of Submesoscale Front and Filament Circulations
title_full Diurnal Evolution of Submesoscale Front and Filament Circulations
title_fullStr Diurnal Evolution of Submesoscale Front and Filament Circulations
title_full_unstemmed Diurnal Evolution of Submesoscale Front and Filament Circulations
title_short Diurnal Evolution of Submesoscale Front and Filament Circulations
title_sort diurnal evolution of submesoscale front and filament circulations
title_unstemmed Diurnal Evolution of Submesoscale Front and Filament Circulations
topic Oceanography
url http://dx.doi.org/10.1175/jpo-d-18-0143.1