author_facet Srinivasan, Kaushik
McWilliams, James C.
Molemaker, M. Jeroen
Barkan, Roy
Srinivasan, Kaushik
McWilliams, James C.
Molemaker, M. Jeroen
Barkan, Roy
author Srinivasan, Kaushik
McWilliams, James C.
Molemaker, M. Jeroen
Barkan, Roy
spellingShingle Srinivasan, Kaushik
McWilliams, James C.
Molemaker, M. Jeroen
Barkan, Roy
Journal of Physical Oceanography
Submesoscale Vortical Wakes in the Lee of Topography
Oceanography
author_sort srinivasan, kaushik
spelling Srinivasan, Kaushik McWilliams, James C. Molemaker, M. Jeroen Barkan, Roy 0022-3670 1520-0485 American Meteorological Society Oceanography http://dx.doi.org/10.1175/jpo-d-18-0042.1 <jats:title>Abstract</jats:title><jats:p>An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency <jats:italic>N</jats:italic>) and rotation (with Coriolis parameter <jats:italic>f</jats:italic>) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity <jats:italic>ζ</jats:italic> and potential vorticity <jats:italic>q</jats:italic> on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have <jats:italic>O</jats:italic>(1) Rossby numbers (<jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf1.gif" /></jats:inline-formula>) and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf2.gif" /></jats:inline-formula>, which is the ratio of the seamount height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf3.gif" /></jats:inline-formula> to that of the Taylor height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf4.gif" /></jats:inline-formula>, where <jats:italic>L</jats:italic> is the seamount half-width. When <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf5.gif" /></jats:inline-formula>, SCVs span the vertical extent of the seamount itself. However, for <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf6.gif" /></jats:inline-formula>, there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf7.gif" /></jats:inline-formula>, instead of the quasigeostrophic scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf8.gif" /></jats:inline-formula>.</jats:p> Submesoscale Vortical Wakes in the Lee of Topography Journal of Physical Oceanography
doi_str_mv 10.1175/jpo-d-18-0042.1
facet_avail Online
Free
finc_class_facet Allgemeine Naturwissenschaft
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMDQyLjE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMDQyLjE
institution DE-Zwi2
DE-D161
DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
imprint American Meteorological Society, 2019
imprint_str_mv American Meteorological Society, 2019
issn 0022-3670
1520-0485
issn_str_mv 0022-3670
1520-0485
language Undetermined
mega_collection American Meteorological Society (CrossRef)
match_str srinivasan2019submesoscalevorticalwakesintheleeoftopography
publishDateSort 2019
publisher American Meteorological Society
recordtype ai
record_format ai
series Journal of Physical Oceanography
source_id 49
title Submesoscale Vortical Wakes in the Lee of Topography
title_unstemmed Submesoscale Vortical Wakes in the Lee of Topography
title_full Submesoscale Vortical Wakes in the Lee of Topography
title_fullStr Submesoscale Vortical Wakes in the Lee of Topography
title_full_unstemmed Submesoscale Vortical Wakes in the Lee of Topography
title_short Submesoscale Vortical Wakes in the Lee of Topography
title_sort submesoscale vortical wakes in the lee of topography
topic Oceanography
url http://dx.doi.org/10.1175/jpo-d-18-0042.1
publishDate 2019
physical 1949-1971
description <jats:title>Abstract</jats:title><jats:p>An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency <jats:italic>N</jats:italic>) and rotation (with Coriolis parameter <jats:italic>f</jats:italic>) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity <jats:italic>ζ</jats:italic> and potential vorticity <jats:italic>q</jats:italic> on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have <jats:italic>O</jats:italic>(1) Rossby numbers (<jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf1.gif" /></jats:inline-formula>) and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf2.gif" /></jats:inline-formula>, which is the ratio of the seamount height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf3.gif" /></jats:inline-formula> to that of the Taylor height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf4.gif" /></jats:inline-formula>, where <jats:italic>L</jats:italic> is the seamount half-width. When <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf5.gif" /></jats:inline-formula>, SCVs span the vertical extent of the seamount itself. However, for <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf6.gif" /></jats:inline-formula>, there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf7.gif" /></jats:inline-formula>, instead of the quasigeostrophic scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf8.gif" /></jats:inline-formula>.</jats:p>
container_issue 7
container_start_page 1949
container_title Journal of Physical Oceanography
container_volume 49
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792345231643901952
geogr_code not assigned
last_indexed 2024-03-01T17:20:12.311Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Submesoscale+Vortical+Wakes+in+the+Lee+of+Topography&rft.date=2019-07-01&genre=article&issn=1520-0485&volume=49&issue=7&spage=1949&epage=1971&pages=1949-1971&jtitle=Journal+of+Physical+Oceanography&atitle=Submesoscale+Vortical+Wakes+in+the+Lee+of+Topography&aulast=Barkan&aufirst=Roy&rft_id=info%3Adoi%2F10.1175%2Fjpo-d-18-0042.1&rft.language%5B0%5D=und
SOLR
_version_ 1792345231643901952
author Srinivasan, Kaushik, McWilliams, James C., Molemaker, M. Jeroen, Barkan, Roy
author_facet Srinivasan, Kaushik, McWilliams, James C., Molemaker, M. Jeroen, Barkan, Roy, Srinivasan, Kaushik, McWilliams, James C., Molemaker, M. Jeroen, Barkan, Roy
author_sort srinivasan, kaushik
container_issue 7
container_start_page 1949
container_title Journal of Physical Oceanography
container_volume 49
description <jats:title>Abstract</jats:title><jats:p>An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency <jats:italic>N</jats:italic>) and rotation (with Coriolis parameter <jats:italic>f</jats:italic>) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity <jats:italic>ζ</jats:italic> and potential vorticity <jats:italic>q</jats:italic> on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have <jats:italic>O</jats:italic>(1) Rossby numbers (<jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf1.gif" /></jats:inline-formula>) and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf2.gif" /></jats:inline-formula>, which is the ratio of the seamount height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf3.gif" /></jats:inline-formula> to that of the Taylor height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf4.gif" /></jats:inline-formula>, where <jats:italic>L</jats:italic> is the seamount half-width. When <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf5.gif" /></jats:inline-formula>, SCVs span the vertical extent of the seamount itself. However, for <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf6.gif" /></jats:inline-formula>, there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf7.gif" /></jats:inline-formula>, instead of the quasigeostrophic scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf8.gif" /></jats:inline-formula>.</jats:p>
doi_str_mv 10.1175/jpo-d-18-0042.1
facet_avail Online, Free
finc_class_facet Allgemeine Naturwissenschaft
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE3NS9qcG8tZC0xOC0wMDQyLjE
imprint American Meteorological Society, 2019
imprint_str_mv American Meteorological Society, 2019
institution DE-Zwi2, DE-D161, DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1
issn 0022-3670, 1520-0485
issn_str_mv 0022-3670, 1520-0485
language Undetermined
last_indexed 2024-03-01T17:20:12.311Z
match_str srinivasan2019submesoscalevorticalwakesintheleeoftopography
mega_collection American Meteorological Society (CrossRef)
physical 1949-1971
publishDate 2019
publishDateSort 2019
publisher American Meteorological Society
record_format ai
recordtype ai
series Journal of Physical Oceanography
source_id 49
spelling Srinivasan, Kaushik McWilliams, James C. Molemaker, M. Jeroen Barkan, Roy 0022-3670 1520-0485 American Meteorological Society Oceanography http://dx.doi.org/10.1175/jpo-d-18-0042.1 <jats:title>Abstract</jats:title><jats:p>An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency <jats:italic>N</jats:italic>) and rotation (with Coriolis parameter <jats:italic>f</jats:italic>) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity <jats:italic>ζ</jats:italic> and potential vorticity <jats:italic>q</jats:italic> on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have <jats:italic>O</jats:italic>(1) Rossby numbers (<jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf1.gif" /></jats:inline-formula>) and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf2.gif" /></jats:inline-formula>, which is the ratio of the seamount height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf3.gif" /></jats:inline-formula> to that of the Taylor height <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf4.gif" /></jats:inline-formula>, where <jats:italic>L</jats:italic> is the seamount half-width. When <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf5.gif" /></jats:inline-formula>, SCVs span the vertical extent of the seamount itself. However, for <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf6.gif" /></jats:inline-formula>, there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf7.gif" /></jats:inline-formula>, instead of the quasigeostrophic scaling <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpo-d-18-0042.1-inf8.gif" /></jats:inline-formula>.</jats:p> Submesoscale Vortical Wakes in the Lee of Topography Journal of Physical Oceanography
spellingShingle Srinivasan, Kaushik, McWilliams, James C., Molemaker, M. Jeroen, Barkan, Roy, Journal of Physical Oceanography, Submesoscale Vortical Wakes in the Lee of Topography, Oceanography
title Submesoscale Vortical Wakes in the Lee of Topography
title_full Submesoscale Vortical Wakes in the Lee of Topography
title_fullStr Submesoscale Vortical Wakes in the Lee of Topography
title_full_unstemmed Submesoscale Vortical Wakes in the Lee of Topography
title_short Submesoscale Vortical Wakes in the Lee of Topography
title_sort submesoscale vortical wakes in the lee of topography
title_unstemmed Submesoscale Vortical Wakes in the Lee of Topography
topic Oceanography
url http://dx.doi.org/10.1175/jpo-d-18-0042.1