author_facet Gupte, Anisha A.
Hamilton, Dale J.
Cordero-Reyes, Andrea M.
Youker, Keith A.
Yin, Zheng
Estep, Jerry D.
Stevens, Robert D.
Wenner, Brett
Ilkayeva, Olga
Loebe, Matthias
Peterson, Leif E.
Lyon, Christopher J.
Wong, Stephen T.C.
Newgard, Christopher B.
Torre-Amione, Guillermo
Taegtmeyer, Heinrich
Hsueh, Willa A.
Gupte, Anisha A.
Hamilton, Dale J.
Cordero-Reyes, Andrea M.
Youker, Keith A.
Yin, Zheng
Estep, Jerry D.
Stevens, Robert D.
Wenner, Brett
Ilkayeva, Olga
Loebe, Matthias
Peterson, Leif E.
Lyon, Christopher J.
Wong, Stephen T.C.
Newgard, Christopher B.
Torre-Amione, Guillermo
Taegtmeyer, Heinrich
Hsueh, Willa A.
author Gupte, Anisha A.
Hamilton, Dale J.
Cordero-Reyes, Andrea M.
Youker, Keith A.
Yin, Zheng
Estep, Jerry D.
Stevens, Robert D.
Wenner, Brett
Ilkayeva, Olga
Loebe, Matthias
Peterson, Leif E.
Lyon, Christopher J.
Wong, Stephen T.C.
Newgard, Christopher B.
Torre-Amione, Guillermo
Taegtmeyer, Heinrich
Hsueh, Willa A.
spellingShingle Gupte, Anisha A.
Hamilton, Dale J.
Cordero-Reyes, Andrea M.
Youker, Keith A.
Yin, Zheng
Estep, Jerry D.
Stevens, Robert D.
Wenner, Brett
Ilkayeva, Olga
Loebe, Matthias
Peterson, Leif E.
Lyon, Christopher J.
Wong, Stephen T.C.
Newgard, Christopher B.
Torre-Amione, Guillermo
Taegtmeyer, Heinrich
Hsueh, Willa A.
Circulation: Cardiovascular Genetics
Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
Genetics (clinical)
Cardiology and Cardiovascular Medicine
Genetics
author_sort gupte, anisha a.
spelling Gupte, Anisha A. Hamilton, Dale J. Cordero-Reyes, Andrea M. Youker, Keith A. Yin, Zheng Estep, Jerry D. Stevens, Robert D. Wenner, Brett Ilkayeva, Olga Loebe, Matthias Peterson, Leif E. Lyon, Christopher J. Wong, Stephen T.C. Newgard, Christopher B. Torre-Amione, Guillermo Taegtmeyer, Heinrich Hsueh, Willa A. 1942-325X 1942-3268 Ovid Technologies (Wolters Kluwer Health) Genetics (clinical) Cardiology and Cardiovascular Medicine Genetics http://dx.doi.org/10.1161/circgenetics.113.000404 <jats:sec> <jats:title>Background—</jats:title> <jats:p>Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods and Results—</jats:title> <jats:p> We compared metabolomic, gene transcript, and protein data from 6 paired samples of failing human left ventricular tissue obtained during left ventricular assist device insertion (heart failure samples) and at heart transplant (post-left ventricular assist device samples). Nonfailing left ventricular wall samples procured from explanted hearts of patients with right heart failure served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in heart failure tissue: 2.6-fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α ( <jats:italic>PGC1A</jats:italic> , 1.3-fold) and estrogen-related receptor α ( <jats:italic>ERRA</jats:italic> , 1.2-fold) and γ ( <jats:italic>ERRG</jats:italic> , 2.2-fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with left ventricular assist device improved all of these metabolic and transcriptional defects. </jats:p> </jats:sec> <jats:sec> <jats:title>Conclusions—</jats:title> <jats:p>These observations underscore an important pathophysiologic role for severely defective metabolism in heart failure, while the reversibility of these defects by left ventricular assist device suggests metabolic resilience of the human heart.</jats:p> </jats:sec> Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure Circulation: Cardiovascular Genetics
doi_str_mv 10.1161/circgenetics.113.000404
facet_avail Online
Free
finc_class_facet Medizin
Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjZ2VuZXRpY3MuMTEzLjAwMDQwNA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjZ2VuZXRpY3MuMTEzLjAwMDQwNA
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Ovid Technologies (Wolters Kluwer Health), 2014
imprint_str_mv Ovid Technologies (Wolters Kluwer Health), 2014
issn 1942-325X
1942-3268
issn_str_mv 1942-325X
1942-3268
language English
mega_collection Ovid Technologies (Wolters Kluwer Health) (CrossRef)
match_str gupte2014mechanicalunloadingpromotesmyocardialenergyrecoveryinhumanheartfailure
publishDateSort 2014
publisher Ovid Technologies (Wolters Kluwer Health)
recordtype ai
record_format ai
series Circulation: Cardiovascular Genetics
source_id 49
title Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_unstemmed Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_full Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_fullStr Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_full_unstemmed Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_short Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_sort mechanical unloading promotes myocardial energy recovery in human heart failure
topic Genetics (clinical)
Cardiology and Cardiovascular Medicine
Genetics
url http://dx.doi.org/10.1161/circgenetics.113.000404
publishDate 2014
physical 266-276
description <jats:sec> <jats:title>Background—</jats:title> <jats:p>Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods and Results—</jats:title> <jats:p> We compared metabolomic, gene transcript, and protein data from 6 paired samples of failing human left ventricular tissue obtained during left ventricular assist device insertion (heart failure samples) and at heart transplant (post-left ventricular assist device samples). Nonfailing left ventricular wall samples procured from explanted hearts of patients with right heart failure served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in heart failure tissue: 2.6-fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α ( <jats:italic>PGC1A</jats:italic> , 1.3-fold) and estrogen-related receptor α ( <jats:italic>ERRA</jats:italic> , 1.2-fold) and γ ( <jats:italic>ERRG</jats:italic> , 2.2-fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with left ventricular assist device improved all of these metabolic and transcriptional defects. </jats:p> </jats:sec> <jats:sec> <jats:title>Conclusions—</jats:title> <jats:p>These observations underscore an important pathophysiologic role for severely defective metabolism in heart failure, while the reversibility of these defects by left ventricular assist device suggests metabolic resilience of the human heart.</jats:p> </jats:sec>
container_issue 3
container_start_page 266
container_title Circulation: Cardiovascular Genetics
container_volume 7
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343919541878787
geogr_code not assigned
last_indexed 2024-03-01T16:59:20.719Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Mechanical+Unloading+Promotes+Myocardial+Energy+Recovery+in+Human+Heart+Failure&rft.date=2014-06-01&genre=article&issn=1942-3268&volume=7&issue=3&spage=266&epage=276&pages=266-276&jtitle=Circulation%3A+Cardiovascular+Genetics&atitle=Mechanical+Unloading+Promotes+Myocardial+Energy+Recovery+in+Human+Heart+Failure&aulast=Hsueh&aufirst=Willa+A.&rft_id=info%3Adoi%2F10.1161%2Fcircgenetics.113.000404&rft.language%5B0%5D=eng
SOLR
_version_ 1792343919541878787
author Gupte, Anisha A., Hamilton, Dale J., Cordero-Reyes, Andrea M., Youker, Keith A., Yin, Zheng, Estep, Jerry D., Stevens, Robert D., Wenner, Brett, Ilkayeva, Olga, Loebe, Matthias, Peterson, Leif E., Lyon, Christopher J., Wong, Stephen T.C., Newgard, Christopher B., Torre-Amione, Guillermo, Taegtmeyer, Heinrich, Hsueh, Willa A.
author_facet Gupte, Anisha A., Hamilton, Dale J., Cordero-Reyes, Andrea M., Youker, Keith A., Yin, Zheng, Estep, Jerry D., Stevens, Robert D., Wenner, Brett, Ilkayeva, Olga, Loebe, Matthias, Peterson, Leif E., Lyon, Christopher J., Wong, Stephen T.C., Newgard, Christopher B., Torre-Amione, Guillermo, Taegtmeyer, Heinrich, Hsueh, Willa A., Gupte, Anisha A., Hamilton, Dale J., Cordero-Reyes, Andrea M., Youker, Keith A., Yin, Zheng, Estep, Jerry D., Stevens, Robert D., Wenner, Brett, Ilkayeva, Olga, Loebe, Matthias, Peterson, Leif E., Lyon, Christopher J., Wong, Stephen T.C., Newgard, Christopher B., Torre-Amione, Guillermo, Taegtmeyer, Heinrich, Hsueh, Willa A.
author_sort gupte, anisha a.
container_issue 3
container_start_page 266
container_title Circulation: Cardiovascular Genetics
container_volume 7
description <jats:sec> <jats:title>Background—</jats:title> <jats:p>Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods and Results—</jats:title> <jats:p> We compared metabolomic, gene transcript, and protein data from 6 paired samples of failing human left ventricular tissue obtained during left ventricular assist device insertion (heart failure samples) and at heart transplant (post-left ventricular assist device samples). Nonfailing left ventricular wall samples procured from explanted hearts of patients with right heart failure served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in heart failure tissue: 2.6-fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α ( <jats:italic>PGC1A</jats:italic> , 1.3-fold) and estrogen-related receptor α ( <jats:italic>ERRA</jats:italic> , 1.2-fold) and γ ( <jats:italic>ERRG</jats:italic> , 2.2-fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with left ventricular assist device improved all of these metabolic and transcriptional defects. </jats:p> </jats:sec> <jats:sec> <jats:title>Conclusions—</jats:title> <jats:p>These observations underscore an important pathophysiologic role for severely defective metabolism in heart failure, while the reversibility of these defects by left ventricular assist device suggests metabolic resilience of the human heart.</jats:p> </jats:sec>
doi_str_mv 10.1161/circgenetics.113.000404
facet_avail Online, Free
finc_class_facet Medizin, Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjZ2VuZXRpY3MuMTEzLjAwMDQwNA
imprint Ovid Technologies (Wolters Kluwer Health), 2014
imprint_str_mv Ovid Technologies (Wolters Kluwer Health), 2014
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1942-325X, 1942-3268
issn_str_mv 1942-325X, 1942-3268
language English
last_indexed 2024-03-01T16:59:20.719Z
match_str gupte2014mechanicalunloadingpromotesmyocardialenergyrecoveryinhumanheartfailure
mega_collection Ovid Technologies (Wolters Kluwer Health) (CrossRef)
physical 266-276
publishDate 2014
publishDateSort 2014
publisher Ovid Technologies (Wolters Kluwer Health)
record_format ai
recordtype ai
series Circulation: Cardiovascular Genetics
source_id 49
spelling Gupte, Anisha A. Hamilton, Dale J. Cordero-Reyes, Andrea M. Youker, Keith A. Yin, Zheng Estep, Jerry D. Stevens, Robert D. Wenner, Brett Ilkayeva, Olga Loebe, Matthias Peterson, Leif E. Lyon, Christopher J. Wong, Stephen T.C. Newgard, Christopher B. Torre-Amione, Guillermo Taegtmeyer, Heinrich Hsueh, Willa A. 1942-325X 1942-3268 Ovid Technologies (Wolters Kluwer Health) Genetics (clinical) Cardiology and Cardiovascular Medicine Genetics http://dx.doi.org/10.1161/circgenetics.113.000404 <jats:sec> <jats:title>Background—</jats:title> <jats:p>Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods and Results—</jats:title> <jats:p> We compared metabolomic, gene transcript, and protein data from 6 paired samples of failing human left ventricular tissue obtained during left ventricular assist device insertion (heart failure samples) and at heart transplant (post-left ventricular assist device samples). Nonfailing left ventricular wall samples procured from explanted hearts of patients with right heart failure served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in heart failure tissue: 2.6-fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α ( <jats:italic>PGC1A</jats:italic> , 1.3-fold) and estrogen-related receptor α ( <jats:italic>ERRA</jats:italic> , 1.2-fold) and γ ( <jats:italic>ERRG</jats:italic> , 2.2-fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with left ventricular assist device improved all of these metabolic and transcriptional defects. </jats:p> </jats:sec> <jats:sec> <jats:title>Conclusions—</jats:title> <jats:p>These observations underscore an important pathophysiologic role for severely defective metabolism in heart failure, while the reversibility of these defects by left ventricular assist device suggests metabolic resilience of the human heart.</jats:p> </jats:sec> Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure Circulation: Cardiovascular Genetics
spellingShingle Gupte, Anisha A., Hamilton, Dale J., Cordero-Reyes, Andrea M., Youker, Keith A., Yin, Zheng, Estep, Jerry D., Stevens, Robert D., Wenner, Brett, Ilkayeva, Olga, Loebe, Matthias, Peterson, Leif E., Lyon, Christopher J., Wong, Stephen T.C., Newgard, Christopher B., Torre-Amione, Guillermo, Taegtmeyer, Heinrich, Hsueh, Willa A., Circulation: Cardiovascular Genetics, Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure, Genetics (clinical), Cardiology and Cardiovascular Medicine, Genetics
title Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_full Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_fullStr Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_full_unstemmed Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_short Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
title_sort mechanical unloading promotes myocardial energy recovery in human heart failure
title_unstemmed Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure
topic Genetics (clinical), Cardiology and Cardiovascular Medicine, Genetics
url http://dx.doi.org/10.1161/circgenetics.113.000404