author_facet Wall, Susan M.
Weinstein, Alan M.
Wall, Susan M.
Weinstein, Alan M.
author Wall, Susan M.
Weinstein, Alan M.
spellingShingle Wall, Susan M.
Weinstein, Alan M.
American Journal of Physiology-Renal Physiology
Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
Physiology
author_sort wall, susan m.
spelling Wall, Susan M. Weinstein, Alan M. 1931-857X 1522-1466 American Physiological Society Physiology http://dx.doi.org/10.1152/ajprenal.00022.2013 <jats:p>Renal intercalated cells mediate the secretion or absorption of Cl<jats:sup>−</jats:sup>and OH<jats:sup>−</jats:sup>/H<jats:sup>+</jats:sup>equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl<jats:sup>−</jats:sup>absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl<jats:sup>−</jats:sup>transporter(s) are targeted by these diuretics is debated. While epithelial Na<jats:sup>+</jats:sup>channel (ENaC) does not transport Cl<jats:sup>−</jats:sup>, it modulates Cl<jats:sup>−</jats:sup>transport probably by generating a lumen-negative voltage, which drives Cl<jats:sup>−</jats:sup>flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl<jats:sup>−</jats:sup>secretion via a type A intercalated cells. During ENaC blockade, Cl<jats:sup>−</jats:sup>is taken up across the basolateral membrane through the Na<jats:sup>+</jats:sup>-K<jats:sup>+</jats:sup>−2Cl<jats:sup>−</jats:sup>cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl<jats:sup>−</jats:sup>channel or an electrogenic exchanger). The mechanism of this apical Cl<jats:sup>−</jats:sup>secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl<jats:sup>−</jats:sup>absorption mediated by a Na<jats:sup>+</jats:sup>-dependent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl<jats:sup>−</jats:sup>absorption varies between studies and probably depends on the treatment model employed. Cl<jats:sup>−</jats:sup>absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na<jats:sup>+</jats:sup>-independent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger pendrin. In the absence of pendrin [ Slc26a4<jats:sup>(−/−)</jats:sup>or pendrin null mice], aldosterone-stimulated Cl<jats:sup>−</jats:sup>absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>. This review summarizes mechanisms of Cl<jats:sup>−</jats:sup>transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.</jats:p> Cortical distal nephron Cl<sup>−</sup>transport in volume homeostasis and blood pressure regulation American Journal of Physiology-Renal Physiology
doi_str_mv 10.1152/ajprenal.00022.2013
facet_avail Online
Free
finc_class_facet Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1Mi9hanByZW5hbC4wMDAyMi4yMDEz
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1Mi9hanByZW5hbC4wMDAyMi4yMDEz
institution DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint American Physiological Society, 2013
imprint_str_mv American Physiological Society, 2013
issn 1522-1466
1931-857X
issn_str_mv 1522-1466
1931-857X
language English
mega_collection American Physiological Society (CrossRef)
match_str wall2013corticaldistalnephroncltransportinvolumehomeostasisandbloodpressureregulation
publishDateSort 2013
publisher American Physiological Society
recordtype ai
record_format ai
series American Journal of Physiology-Renal Physiology
source_id 49
title Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_unstemmed Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_full Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_fullStr Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_full_unstemmed Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_short Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_sort cortical distal nephron cl<sup>−</sup>transport in volume homeostasis and blood pressure regulation
topic Physiology
url http://dx.doi.org/10.1152/ajprenal.00022.2013
publishDate 2013
physical F427-F438
description <jats:p>Renal intercalated cells mediate the secretion or absorption of Cl<jats:sup>−</jats:sup>and OH<jats:sup>−</jats:sup>/H<jats:sup>+</jats:sup>equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl<jats:sup>−</jats:sup>absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl<jats:sup>−</jats:sup>transporter(s) are targeted by these diuretics is debated. While epithelial Na<jats:sup>+</jats:sup>channel (ENaC) does not transport Cl<jats:sup>−</jats:sup>, it modulates Cl<jats:sup>−</jats:sup>transport probably by generating a lumen-negative voltage, which drives Cl<jats:sup>−</jats:sup>flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl<jats:sup>−</jats:sup>secretion via a type A intercalated cells. During ENaC blockade, Cl<jats:sup>−</jats:sup>is taken up across the basolateral membrane through the Na<jats:sup>+</jats:sup>-K<jats:sup>+</jats:sup>−2Cl<jats:sup>−</jats:sup>cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl<jats:sup>−</jats:sup>channel or an electrogenic exchanger). The mechanism of this apical Cl<jats:sup>−</jats:sup>secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl<jats:sup>−</jats:sup>absorption mediated by a Na<jats:sup>+</jats:sup>-dependent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl<jats:sup>−</jats:sup>absorption varies between studies and probably depends on the treatment model employed. Cl<jats:sup>−</jats:sup>absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na<jats:sup>+</jats:sup>-independent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger pendrin. In the absence of pendrin [ Slc26a4<jats:sup>(−/−)</jats:sup>or pendrin null mice], aldosterone-stimulated Cl<jats:sup>−</jats:sup>absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>. This review summarizes mechanisms of Cl<jats:sup>−</jats:sup>transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.</jats:p>
container_issue 4
container_start_page 0
container_title American Journal of Physiology-Renal Physiology
container_volume 305
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792341905559781380
geogr_code not assigned
last_indexed 2024-03-01T16:27:19.657Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Cortical+distal+nephron+Cl%E2%88%92transport+in+volume+homeostasis+and+blood+pressure+regulation&rft.date=2013-08-15&genre=article&issn=1522-1466&volume=305&issue=4&pages=F427-F438&jtitle=American+Journal+of+Physiology-Renal+Physiology&atitle=Cortical+distal+nephron+Cl%3Csup%3E%E2%88%92%3C%2Fsup%3Etransport+in+volume+homeostasis+and+blood+pressure+regulation&aulast=Weinstein&aufirst=Alan+M.&rft_id=info%3Adoi%2F10.1152%2Fajprenal.00022.2013&rft.language%5B0%5D=eng
SOLR
_version_ 1792341905559781380
author Wall, Susan M., Weinstein, Alan M.
author_facet Wall, Susan M., Weinstein, Alan M., Wall, Susan M., Weinstein, Alan M.
author_sort wall, susan m.
container_issue 4
container_start_page 0
container_title American Journal of Physiology-Renal Physiology
container_volume 305
description <jats:p>Renal intercalated cells mediate the secretion or absorption of Cl<jats:sup>−</jats:sup>and OH<jats:sup>−</jats:sup>/H<jats:sup>+</jats:sup>equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl<jats:sup>−</jats:sup>absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl<jats:sup>−</jats:sup>transporter(s) are targeted by these diuretics is debated. While epithelial Na<jats:sup>+</jats:sup>channel (ENaC) does not transport Cl<jats:sup>−</jats:sup>, it modulates Cl<jats:sup>−</jats:sup>transport probably by generating a lumen-negative voltage, which drives Cl<jats:sup>−</jats:sup>flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl<jats:sup>−</jats:sup>secretion via a type A intercalated cells. During ENaC blockade, Cl<jats:sup>−</jats:sup>is taken up across the basolateral membrane through the Na<jats:sup>+</jats:sup>-K<jats:sup>+</jats:sup>−2Cl<jats:sup>−</jats:sup>cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl<jats:sup>−</jats:sup>channel or an electrogenic exchanger). The mechanism of this apical Cl<jats:sup>−</jats:sup>secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl<jats:sup>−</jats:sup>absorption mediated by a Na<jats:sup>+</jats:sup>-dependent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl<jats:sup>−</jats:sup>absorption varies between studies and probably depends on the treatment model employed. Cl<jats:sup>−</jats:sup>absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na<jats:sup>+</jats:sup>-independent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger pendrin. In the absence of pendrin [ Slc26a4<jats:sup>(−/−)</jats:sup>or pendrin null mice], aldosterone-stimulated Cl<jats:sup>−</jats:sup>absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>. This review summarizes mechanisms of Cl<jats:sup>−</jats:sup>transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.</jats:p>
doi_str_mv 10.1152/ajprenal.00022.2013
facet_avail Online, Free
finc_class_facet Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1Mi9hanByZW5hbC4wMDAyMi4yMDEz
imprint American Physiological Society, 2013
imprint_str_mv American Physiological Society, 2013
institution DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 1522-1466, 1931-857X
issn_str_mv 1522-1466, 1931-857X
language English
last_indexed 2024-03-01T16:27:19.657Z
match_str wall2013corticaldistalnephroncltransportinvolumehomeostasisandbloodpressureregulation
mega_collection American Physiological Society (CrossRef)
physical F427-F438
publishDate 2013
publishDateSort 2013
publisher American Physiological Society
record_format ai
recordtype ai
series American Journal of Physiology-Renal Physiology
source_id 49
spelling Wall, Susan M. Weinstein, Alan M. 1931-857X 1522-1466 American Physiological Society Physiology http://dx.doi.org/10.1152/ajprenal.00022.2013 <jats:p>Renal intercalated cells mediate the secretion or absorption of Cl<jats:sup>−</jats:sup>and OH<jats:sup>−</jats:sup>/H<jats:sup>+</jats:sup>equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl<jats:sup>−</jats:sup>absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl<jats:sup>−</jats:sup>transporter(s) are targeted by these diuretics is debated. While epithelial Na<jats:sup>+</jats:sup>channel (ENaC) does not transport Cl<jats:sup>−</jats:sup>, it modulates Cl<jats:sup>−</jats:sup>transport probably by generating a lumen-negative voltage, which drives Cl<jats:sup>−</jats:sup>flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl<jats:sup>−</jats:sup>secretion via a type A intercalated cells. During ENaC blockade, Cl<jats:sup>−</jats:sup>is taken up across the basolateral membrane through the Na<jats:sup>+</jats:sup>-K<jats:sup>+</jats:sup>−2Cl<jats:sup>−</jats:sup>cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl<jats:sup>−</jats:sup>channel or an electrogenic exchanger). The mechanism of this apical Cl<jats:sup>−</jats:sup>secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl<jats:sup>−</jats:sup>absorption mediated by a Na<jats:sup>+</jats:sup>-dependent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl<jats:sup>−</jats:sup>absorption varies between studies and probably depends on the treatment model employed. Cl<jats:sup>−</jats:sup>absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na<jats:sup>+</jats:sup>-independent Cl<jats:sup>−</jats:sup>/HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>exchanger pendrin. In the absence of pendrin [ Slc26a4<jats:sup>(−/−)</jats:sup>or pendrin null mice], aldosterone-stimulated Cl<jats:sup>−</jats:sup>absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>. This review summarizes mechanisms of Cl<jats:sup>−</jats:sup>transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.</jats:p> Cortical distal nephron Cl<sup>−</sup>transport in volume homeostasis and blood pressure regulation American Journal of Physiology-Renal Physiology
spellingShingle Wall, Susan M., Weinstein, Alan M., American Journal of Physiology-Renal Physiology, Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation, Physiology
title Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_full Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_fullStr Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_full_unstemmed Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_short Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
title_sort cortical distal nephron cl<sup>−</sup>transport in volume homeostasis and blood pressure regulation
title_unstemmed Cortical distal nephron Cl−transport in volume homeostasis and blood pressure regulation
topic Physiology
url http://dx.doi.org/10.1152/ajprenal.00022.2013