author_facet Dana, Asaf
Zheng, Zhong
Peng, Gunnar G.
Stone, Howard A.
Huppert, Herbert E.
Ramon, Guy Z.
Dana, Asaf
Zheng, Zhong
Peng, Gunnar G.
Stone, Howard A.
Huppert, Herbert E.
Ramon, Guy Z.
author Dana, Asaf
Zheng, Zhong
Peng, Gunnar G.
Stone, Howard A.
Huppert, Herbert E.
Ramon, Guy Z.
spellingShingle Dana, Asaf
Zheng, Zhong
Peng, Gunnar G.
Stone, Howard A.
Huppert, Herbert E.
Ramon, Guy Z.
Journal of Fluid Mechanics
Dynamics of viscous backflow from a model fracture network
Mechanical Engineering
Mechanics of Materials
Condensed Matter Physics
author_sort dana, asaf
spelling Dana, Asaf Zheng, Zhong Peng, Gunnar G. Stone, Howard A. Huppert, Herbert E. Ramon, Guy Z. 0022-1120 1469-7645 Cambridge University Press (CUP) Mechanical Engineering Mechanics of Materials Condensed Matter Physics http://dx.doi.org/10.1017/jfm.2017.778 <jats:p>Hydraulic fracturing for production of oil and gas from shale formations releases fluid waste, by-products that must be managed carefully to avoid significant harm to human health and the environment. These fluids are presumed to result from a variety of fracture relaxation processes, and are commonly referred to as ‘flowback’ and ‘produced water’, depending primarily on the time scale of their appearance. Here, a model is presented for investigating the dynamics of backflows caused by the elastic relaxation of a pre-strained medium, namely a single fracture and two model fracture network systems: a single bifurcated channel and its generalization for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline1" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> bifurcated fracture generations. Early- and late-time asymptotic solutions are obtained for the model problems and agree well with numerical solutions. In the late-time period, the fracture apertures and backflow rates exhibit a time dependence of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline2" /><jats:tex-math>$t^{-1/3}$</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline3" /><jats:tex-math>$t^{-4/3}$</jats:tex-math></jats:alternatives></jats:inline-formula>, respectively. In addition, the pressure distributions collapse to universal curves when scaled by the maximum pressure in the system, which we calculate as a function of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline4" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. The pressure gradient along the network is steepest near the outlet while the bulk of the network serves as a ‘reservoir’. Fracture networks with larger <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline5" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> are less efficient at evicting fluids, manifested through a longer time required for a given fractional reduction of the initial volume. The developed framework may be useful for informing engineering design and environmental regulations.</jats:p> Dynamics of viscous backflow from a model fracture network Journal of Fluid Mechanics
doi_str_mv 10.1017/jfm.2017.778
facet_avail Online
finc_class_facet Technik
Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9qZm0uMjAxNy43Nzg
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9qZm0uMjAxNy43Nzg
institution DE-D161
DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
imprint Cambridge University Press (CUP), 2018
imprint_str_mv Cambridge University Press (CUP), 2018
issn 1469-7645
0022-1120
issn_str_mv 1469-7645
0022-1120
language English
mega_collection Cambridge University Press (CUP) (CrossRef)
match_str dana2018dynamicsofviscousbackflowfromamodelfracturenetwork
publishDateSort 2018
publisher Cambridge University Press (CUP)
recordtype ai
record_format ai
series Journal of Fluid Mechanics
source_id 49
title Dynamics of viscous backflow from a model fracture network
title_unstemmed Dynamics of viscous backflow from a model fracture network
title_full Dynamics of viscous backflow from a model fracture network
title_fullStr Dynamics of viscous backflow from a model fracture network
title_full_unstemmed Dynamics of viscous backflow from a model fracture network
title_short Dynamics of viscous backflow from a model fracture network
title_sort dynamics of viscous backflow from a model fracture network
topic Mechanical Engineering
Mechanics of Materials
Condensed Matter Physics
url http://dx.doi.org/10.1017/jfm.2017.778
publishDate 2018
physical 828-849
description <jats:p>Hydraulic fracturing for production of oil and gas from shale formations releases fluid waste, by-products that must be managed carefully to avoid significant harm to human health and the environment. These fluids are presumed to result from a variety of fracture relaxation processes, and are commonly referred to as ‘flowback’ and ‘produced water’, depending primarily on the time scale of their appearance. Here, a model is presented for investigating the dynamics of backflows caused by the elastic relaxation of a pre-strained medium, namely a single fracture and two model fracture network systems: a single bifurcated channel and its generalization for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline1" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> bifurcated fracture generations. Early- and late-time asymptotic solutions are obtained for the model problems and agree well with numerical solutions. In the late-time period, the fracture apertures and backflow rates exhibit a time dependence of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline2" /><jats:tex-math>$t^{-1/3}$</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline3" /><jats:tex-math>$t^{-4/3}$</jats:tex-math></jats:alternatives></jats:inline-formula>, respectively. In addition, the pressure distributions collapse to universal curves when scaled by the maximum pressure in the system, which we calculate as a function of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline4" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. The pressure gradient along the network is steepest near the outlet while the bulk of the network serves as a ‘reservoir’. Fracture networks with larger <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline5" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> are less efficient at evicting fluids, manifested through a longer time required for a given fractional reduction of the initial volume. The developed framework may be useful for informing engineering design and environmental regulations.</jats:p>
container_start_page 828
container_title Journal of Fluid Mechanics
container_volume 836
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792340288679706624
geogr_code not assigned
last_indexed 2024-03-01T16:01:39.186Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Dynamics+of+viscous+backflow+from+a+model+fracture+network&rft.date=2018-02-10&genre=article&issn=1469-7645&volume=836&spage=828&epage=849&pages=828-849&jtitle=Journal+of+Fluid+Mechanics&atitle=Dynamics+of+viscous+backflow+from+a+model+fracture+network&aulast=Ramon&aufirst=Guy+Z.&rft_id=info%3Adoi%2F10.1017%2Fjfm.2017.778&rft.language%5B0%5D=eng
SOLR
_version_ 1792340288679706624
author Dana, Asaf, Zheng, Zhong, Peng, Gunnar G., Stone, Howard A., Huppert, Herbert E., Ramon, Guy Z.
author_facet Dana, Asaf, Zheng, Zhong, Peng, Gunnar G., Stone, Howard A., Huppert, Herbert E., Ramon, Guy Z., Dana, Asaf, Zheng, Zhong, Peng, Gunnar G., Stone, Howard A., Huppert, Herbert E., Ramon, Guy Z.
author_sort dana, asaf
container_start_page 828
container_title Journal of Fluid Mechanics
container_volume 836
description <jats:p>Hydraulic fracturing for production of oil and gas from shale formations releases fluid waste, by-products that must be managed carefully to avoid significant harm to human health and the environment. These fluids are presumed to result from a variety of fracture relaxation processes, and are commonly referred to as ‘flowback’ and ‘produced water’, depending primarily on the time scale of their appearance. Here, a model is presented for investigating the dynamics of backflows caused by the elastic relaxation of a pre-strained medium, namely a single fracture and two model fracture network systems: a single bifurcated channel and its generalization for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline1" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> bifurcated fracture generations. Early- and late-time asymptotic solutions are obtained for the model problems and agree well with numerical solutions. In the late-time period, the fracture apertures and backflow rates exhibit a time dependence of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline2" /><jats:tex-math>$t^{-1/3}$</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline3" /><jats:tex-math>$t^{-4/3}$</jats:tex-math></jats:alternatives></jats:inline-formula>, respectively. In addition, the pressure distributions collapse to universal curves when scaled by the maximum pressure in the system, which we calculate as a function of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline4" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. The pressure gradient along the network is steepest near the outlet while the bulk of the network serves as a ‘reservoir’. Fracture networks with larger <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline5" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> are less efficient at evicting fluids, manifested through a longer time required for a given fractional reduction of the initial volume. The developed framework may be useful for informing engineering design and environmental regulations.</jats:p>
doi_str_mv 10.1017/jfm.2017.778
facet_avail Online
finc_class_facet Technik, Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9qZm0uMjAxNy43Nzg
imprint Cambridge University Press (CUP), 2018
imprint_str_mv Cambridge University Press (CUP), 2018
institution DE-D161, DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1
issn 1469-7645, 0022-1120
issn_str_mv 1469-7645, 0022-1120
language English
last_indexed 2024-03-01T16:01:39.186Z
match_str dana2018dynamicsofviscousbackflowfromamodelfracturenetwork
mega_collection Cambridge University Press (CUP) (CrossRef)
physical 828-849
publishDate 2018
publishDateSort 2018
publisher Cambridge University Press (CUP)
record_format ai
recordtype ai
series Journal of Fluid Mechanics
source_id 49
spelling Dana, Asaf Zheng, Zhong Peng, Gunnar G. Stone, Howard A. Huppert, Herbert E. Ramon, Guy Z. 0022-1120 1469-7645 Cambridge University Press (CUP) Mechanical Engineering Mechanics of Materials Condensed Matter Physics http://dx.doi.org/10.1017/jfm.2017.778 <jats:p>Hydraulic fracturing for production of oil and gas from shale formations releases fluid waste, by-products that must be managed carefully to avoid significant harm to human health and the environment. These fluids are presumed to result from a variety of fracture relaxation processes, and are commonly referred to as ‘flowback’ and ‘produced water’, depending primarily on the time scale of their appearance. Here, a model is presented for investigating the dynamics of backflows caused by the elastic relaxation of a pre-strained medium, namely a single fracture and two model fracture network systems: a single bifurcated channel and its generalization for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline1" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> bifurcated fracture generations. Early- and late-time asymptotic solutions are obtained for the model problems and agree well with numerical solutions. In the late-time period, the fracture apertures and backflow rates exhibit a time dependence of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline2" /><jats:tex-math>$t^{-1/3}$</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline3" /><jats:tex-math>$t^{-4/3}$</jats:tex-math></jats:alternatives></jats:inline-formula>, respectively. In addition, the pressure distributions collapse to universal curves when scaled by the maximum pressure in the system, which we calculate as a function of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline4" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula>. The pressure gradient along the network is steepest near the outlet while the bulk of the network serves as a ‘reservoir’. Fracture networks with larger <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112017007789_inline5" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives></jats:inline-formula> are less efficient at evicting fluids, manifested through a longer time required for a given fractional reduction of the initial volume. The developed framework may be useful for informing engineering design and environmental regulations.</jats:p> Dynamics of viscous backflow from a model fracture network Journal of Fluid Mechanics
spellingShingle Dana, Asaf, Zheng, Zhong, Peng, Gunnar G., Stone, Howard A., Huppert, Herbert E., Ramon, Guy Z., Journal of Fluid Mechanics, Dynamics of viscous backflow from a model fracture network, Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics
title Dynamics of viscous backflow from a model fracture network
title_full Dynamics of viscous backflow from a model fracture network
title_fullStr Dynamics of viscous backflow from a model fracture network
title_full_unstemmed Dynamics of viscous backflow from a model fracture network
title_short Dynamics of viscous backflow from a model fracture network
title_sort dynamics of viscous backflow from a model fracture network
title_unstemmed Dynamics of viscous backflow from a model fracture network
topic Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics
url http://dx.doi.org/10.1017/jfm.2017.778