author_facet Zeng, Jingqi
Zhou, Zheng
Liao, Yuan
Ma, Lijuan
Huang, Xingguo
Zhang, Jing
Lin, Ling
Zhu, Jinyuan
Lei, Leting
Cao, Junjie
Shen, Haoran
Zheng, Yanfei
Wu, Zhisheng
Zeng, Jingqi
Zhou, Zheng
Liao, Yuan
Ma, Lijuan
Huang, Xingguo
Zhang, Jing
Lin, Ling
Zhu, Jinyuan
Lei, Leting
Cao, Junjie
Shen, Haoran
Zheng, Yanfei
Wu, Zhisheng
author Zeng, Jingqi
Zhou, Zheng
Liao, Yuan
Ma, Lijuan
Huang, Xingguo
Zhang, Jing
Lin, Ling
Zhu, Jinyuan
Lei, Leting
Cao, Junjie
Shen, Haoran
Zheng, Yanfei
Wu, Zhisheng
spellingShingle Zeng, Jingqi
Zhou, Zheng
Liao, Yuan
Ma, Lijuan
Huang, Xingguo
Zhang, Jing
Lin, Ling
Zhu, Jinyuan
Lei, Leting
Cao, Junjie
Shen, Haoran
Zheng, Yanfei
Wu, Zhisheng
Phytochemical Analysis
System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
Complementary and alternative medicine
Drug Discovery
Plant Science
Molecular Medicine
General Medicine
Biochemistry
Food Science
Analytical Chemistry
author_sort zeng, jingqi
spelling Zeng, Jingqi Zhou, Zheng Liao, Yuan Ma, Lijuan Huang, Xingguo Zhang, Jing Lin, Ling Zhu, Jinyuan Lei, Leting Cao, Junjie Shen, Haoran Zheng, Yanfei Wu, Zhisheng 0958-0344 1099-1565 Wiley Complementary and alternative medicine Drug Discovery Plant Science Molecular Medicine General Medicine Biochemistry Food Science Analytical Chemistry http://dx.doi.org/10.1002/pca.2919 <jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>The on‐line analysis of active pharmaceutical ingredients (APIs) during the extraction process in herbal medicine is a challenge. Establishing a reliable and robust model is a critical procedure for the industrial application of on‐line near‐infrared (NIR) technology.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To evaluate the advantages of on‐line NIR model development using system optimisation strategy, <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch was used as a case. The content of liquiritin and glycyrrhizic acid was monitored during pilot scale extraction process of <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch in three batches.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>High‐performance liquid chromatography (HPLC) was used as reference method for content determination of liquiritin and glycyrrhizic acid. The quantitative models of on‐line NIR were developed by system optimisation of processing trajectory. For comparison, the models were simultaneously developed by stepwise optimisation. Moreover, the modelling parameters obtained through system optimisation and stepwise optimisation were reused in three batches. Root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to assess the model quality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The average values of RMSEP and RPD of systematic model for liquiritin in three batches were 0.0361, 4.1525 (first batch), 0.0348, 4.7286 (second batch) and 0.0311, 4.9686 (third batch), respectively. In addition, the modelling parameters of systematic model for glycyrrhizic acid in three batches were same, and the average values of RMSEP and RPD were 0.0665 and 5.2751, respectively. The predictive performance and robustness of systematic models for the three batches were better than the comparison models.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The work demonstrated that system optimisation quantitative model of on‐line NIR could be used to determine the contents of liquiritin and glycyrrhizic acid during <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch extraction process.</jats:p></jats:sec> System optimisation quantitative model of on‐line NIR: a case of <i>Glycyrrhiza uralensis</i> Fisch extraction process Phytochemical Analysis
doi_str_mv 10.1002/pca.2919
facet_avail Online
finc_class_facet Medizin
Chemie und Pharmazie
Biologie
Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9wY2EuMjkxOQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9wY2EuMjkxOQ
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2021
imprint_str_mv Wiley, 2021
issn 0958-0344
1099-1565
issn_str_mv 0958-0344
1099-1565
language English
mega_collection Wiley (CrossRef)
match_str zeng2021systemoptimisationquantitativemodelofonlineniracaseofglycyrrhizauralensisfischextractionprocess
publishDateSort 2021
publisher Wiley
recordtype ai
record_format ai
series Phytochemical Analysis
source_id 49
title System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_unstemmed System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_full System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_fullStr System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_full_unstemmed System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_short System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_sort system optimisation quantitative model of on‐line nir: a case of <i>glycyrrhiza uralensis</i> fisch extraction process
topic Complementary and alternative medicine
Drug Discovery
Plant Science
Molecular Medicine
General Medicine
Biochemistry
Food Science
Analytical Chemistry
url http://dx.doi.org/10.1002/pca.2919
publishDate 2021
physical 165-171
description <jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>The on‐line analysis of active pharmaceutical ingredients (APIs) during the extraction process in herbal medicine is a challenge. Establishing a reliable and robust model is a critical procedure for the industrial application of on‐line near‐infrared (NIR) technology.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To evaluate the advantages of on‐line NIR model development using system optimisation strategy, <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch was used as a case. The content of liquiritin and glycyrrhizic acid was monitored during pilot scale extraction process of <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch in three batches.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>High‐performance liquid chromatography (HPLC) was used as reference method for content determination of liquiritin and glycyrrhizic acid. The quantitative models of on‐line NIR were developed by system optimisation of processing trajectory. For comparison, the models were simultaneously developed by stepwise optimisation. Moreover, the modelling parameters obtained through system optimisation and stepwise optimisation were reused in three batches. Root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to assess the model quality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The average values of RMSEP and RPD of systematic model for liquiritin in three batches were 0.0361, 4.1525 (first batch), 0.0348, 4.7286 (second batch) and 0.0311, 4.9686 (third batch), respectively. In addition, the modelling parameters of systematic model for glycyrrhizic acid in three batches were same, and the average values of RMSEP and RPD were 0.0665 and 5.2751, respectively. The predictive performance and robustness of systematic models for the three batches were better than the comparison models.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The work demonstrated that system optimisation quantitative model of on‐line NIR could be used to determine the contents of liquiritin and glycyrrhizic acid during <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch extraction process.</jats:p></jats:sec>
container_issue 2
container_start_page 165
container_title Phytochemical Analysis
container_volume 32
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792341182126227462
geogr_code not assigned
last_indexed 2024-03-01T16:15:38.429Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=System+optimisation+quantitative+model+of+on%E2%80%90line+NIR%3A+a+case+of+Glycyrrhiza+uralensis+Fisch+extraction+process&rft.date=2021-04-01&genre=article&issn=1099-1565&volume=32&issue=2&spage=165&epage=171&pages=165-171&jtitle=Phytochemical+Analysis&atitle=System+optimisation+quantitative+model+of+on%E2%80%90line+NIR%3A+a+case+of+%3Ci%3EGlycyrrhiza+uralensis%3C%2Fi%3E+Fisch+extraction+process&aulast=Wu&aufirst=Zhisheng&rft_id=info%3Adoi%2F10.1002%2Fpca.2919&rft.language%5B0%5D=eng
SOLR
_version_ 1792341182126227462
author Zeng, Jingqi, Zhou, Zheng, Liao, Yuan, Ma, Lijuan, Huang, Xingguo, Zhang, Jing, Lin, Ling, Zhu, Jinyuan, Lei, Leting, Cao, Junjie, Shen, Haoran, Zheng, Yanfei, Wu, Zhisheng
author_facet Zeng, Jingqi, Zhou, Zheng, Liao, Yuan, Ma, Lijuan, Huang, Xingguo, Zhang, Jing, Lin, Ling, Zhu, Jinyuan, Lei, Leting, Cao, Junjie, Shen, Haoran, Zheng, Yanfei, Wu, Zhisheng, Zeng, Jingqi, Zhou, Zheng, Liao, Yuan, Ma, Lijuan, Huang, Xingguo, Zhang, Jing, Lin, Ling, Zhu, Jinyuan, Lei, Leting, Cao, Junjie, Shen, Haoran, Zheng, Yanfei, Wu, Zhisheng
author_sort zeng, jingqi
container_issue 2
container_start_page 165
container_title Phytochemical Analysis
container_volume 32
description <jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>The on‐line analysis of active pharmaceutical ingredients (APIs) during the extraction process in herbal medicine is a challenge. Establishing a reliable and robust model is a critical procedure for the industrial application of on‐line near‐infrared (NIR) technology.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To evaluate the advantages of on‐line NIR model development using system optimisation strategy, <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch was used as a case. The content of liquiritin and glycyrrhizic acid was monitored during pilot scale extraction process of <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch in three batches.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>High‐performance liquid chromatography (HPLC) was used as reference method for content determination of liquiritin and glycyrrhizic acid. The quantitative models of on‐line NIR were developed by system optimisation of processing trajectory. For comparison, the models were simultaneously developed by stepwise optimisation. Moreover, the modelling parameters obtained through system optimisation and stepwise optimisation were reused in three batches. Root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to assess the model quality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The average values of RMSEP and RPD of systematic model for liquiritin in three batches were 0.0361, 4.1525 (first batch), 0.0348, 4.7286 (second batch) and 0.0311, 4.9686 (third batch), respectively. In addition, the modelling parameters of systematic model for glycyrrhizic acid in three batches were same, and the average values of RMSEP and RPD were 0.0665 and 5.2751, respectively. The predictive performance and robustness of systematic models for the three batches were better than the comparison models.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The work demonstrated that system optimisation quantitative model of on‐line NIR could be used to determine the contents of liquiritin and glycyrrhizic acid during <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch extraction process.</jats:p></jats:sec>
doi_str_mv 10.1002/pca.2919
facet_avail Online
finc_class_facet Medizin, Chemie und Pharmazie, Biologie, Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9wY2EuMjkxOQ
imprint Wiley, 2021
imprint_str_mv Wiley, 2021
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 0958-0344, 1099-1565
issn_str_mv 0958-0344, 1099-1565
language English
last_indexed 2024-03-01T16:15:38.429Z
match_str zeng2021systemoptimisationquantitativemodelofonlineniracaseofglycyrrhizauralensisfischextractionprocess
mega_collection Wiley (CrossRef)
physical 165-171
publishDate 2021
publishDateSort 2021
publisher Wiley
record_format ai
recordtype ai
series Phytochemical Analysis
source_id 49
spelling Zeng, Jingqi Zhou, Zheng Liao, Yuan Ma, Lijuan Huang, Xingguo Zhang, Jing Lin, Ling Zhu, Jinyuan Lei, Leting Cao, Junjie Shen, Haoran Zheng, Yanfei Wu, Zhisheng 0958-0344 1099-1565 Wiley Complementary and alternative medicine Drug Discovery Plant Science Molecular Medicine General Medicine Biochemistry Food Science Analytical Chemistry http://dx.doi.org/10.1002/pca.2919 <jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>The on‐line analysis of active pharmaceutical ingredients (APIs) during the extraction process in herbal medicine is a challenge. Establishing a reliable and robust model is a critical procedure for the industrial application of on‐line near‐infrared (NIR) technology.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To evaluate the advantages of on‐line NIR model development using system optimisation strategy, <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch was used as a case. The content of liquiritin and glycyrrhizic acid was monitored during pilot scale extraction process of <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch in three batches.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>High‐performance liquid chromatography (HPLC) was used as reference method for content determination of liquiritin and glycyrrhizic acid. The quantitative models of on‐line NIR were developed by system optimisation of processing trajectory. For comparison, the models were simultaneously developed by stepwise optimisation. Moreover, the modelling parameters obtained through system optimisation and stepwise optimisation were reused in three batches. Root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to assess the model quality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The average values of RMSEP and RPD of systematic model for liquiritin in three batches were 0.0361, 4.1525 (first batch), 0.0348, 4.7286 (second batch) and 0.0311, 4.9686 (third batch), respectively. In addition, the modelling parameters of systematic model for glycyrrhizic acid in three batches were same, and the average values of RMSEP and RPD were 0.0665 and 5.2751, respectively. The predictive performance and robustness of systematic models for the three batches were better than the comparison models.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The work demonstrated that system optimisation quantitative model of on‐line NIR could be used to determine the contents of liquiritin and glycyrrhizic acid during <jats:italic>Glycyrrhiza uralensis</jats:italic> Fisch extraction process.</jats:p></jats:sec> System optimisation quantitative model of on‐line NIR: a case of <i>Glycyrrhiza uralensis</i> Fisch extraction process Phytochemical Analysis
spellingShingle Zeng, Jingqi, Zhou, Zheng, Liao, Yuan, Ma, Lijuan, Huang, Xingguo, Zhang, Jing, Lin, Ling, Zhu, Jinyuan, Lei, Leting, Cao, Junjie, Shen, Haoran, Zheng, Yanfei, Wu, Zhisheng, Phytochemical Analysis, System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process, Complementary and alternative medicine, Drug Discovery, Plant Science, Molecular Medicine, General Medicine, Biochemistry, Food Science, Analytical Chemistry
title System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_full System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_fullStr System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_full_unstemmed System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_short System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
title_sort system optimisation quantitative model of on‐line nir: a case of <i>glycyrrhiza uralensis</i> fisch extraction process
title_unstemmed System optimisation quantitative model of on‐line NIR: a case of Glycyrrhiza uralensis Fisch extraction process
topic Complementary and alternative medicine, Drug Discovery, Plant Science, Molecular Medicine, General Medicine, Biochemistry, Food Science, Analytical Chemistry
url http://dx.doi.org/10.1002/pca.2919