author_facet Stijnman, Peter R. S.
Tokaya, Janot P.
van Gemert, Jeroen
Luijten, Peter R.
Pluim, Josien P. W.
Brink, Wyger M.
Remis, Rob F.
van den Berg, Cornelis A. T.
Raaijmakers, Alexander J. E.
Stijnman, Peter R. S.
Tokaya, Janot P.
van Gemert, Jeroen
Luijten, Peter R.
Pluim, Josien P. W.
Brink, Wyger M.
Remis, Rob F.
van den Berg, Cornelis A. T.
Raaijmakers, Alexander J. E.
author Stijnman, Peter R. S.
Tokaya, Janot P.
van Gemert, Jeroen
Luijten, Peter R.
Pluim, Josien P. W.
Brink, Wyger M.
Remis, Rob F.
van den Berg, Cornelis A. T.
Raaijmakers, Alexander J. E.
spellingShingle Stijnman, Peter R. S.
Tokaya, Janot P.
van Gemert, Jeroen
Luijten, Peter R.
Pluim, Josien P. W.
Brink, Wyger M.
Remis, Rob F.
van den Berg, Cornelis A. T.
Raaijmakers, Alexander J. E.
Magnetic Resonance in Medicine
Accelerating implant RF safety assessment using a low‐rank inverse update method
Radiology, Nuclear Medicine and imaging
author_sort stijnman, peter r. s.
spelling Stijnman, Peter R. S. Tokaya, Janot P. van Gemert, Jeroen Luijten, Peter R. Pluim, Josien P. W. Brink, Wyger M. Remis, Rob F. van den Berg, Cornelis A. T. Raaijmakers, Alexander J. E. 0740-3194 1522-2594 Wiley Radiology, Nuclear Medicine and imaging http://dx.doi.org/10.1002/mrm.28023 <jats:sec><jats:title>Purpose</jats:title><jats:p>Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.</jats:p></jats:sec> Accelerating implant RF safety assessment using a low‐rank inverse update method Magnetic Resonance in Medicine
doi_str_mv 10.1002/mrm.28023
facet_avail Online
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9tcm0uMjgwMjM
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9tcm0uMjgwMjM
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2020
imprint_str_mv Wiley, 2020
issn 0740-3194
1522-2594
issn_str_mv 0740-3194
1522-2594
language English
mega_collection Wiley (CrossRef)
match_str stijnman2020acceleratingimplantrfsafetyassessmentusingalowrankinverseupdatemethod
publishDateSort 2020
publisher Wiley
recordtype ai
record_format ai
series Magnetic Resonance in Medicine
source_id 49
title Accelerating implant RF safety assessment using a low‐rank inverse update method
title_unstemmed Accelerating implant RF safety assessment using a low‐rank inverse update method
title_full Accelerating implant RF safety assessment using a low‐rank inverse update method
title_fullStr Accelerating implant RF safety assessment using a low‐rank inverse update method
title_full_unstemmed Accelerating implant RF safety assessment using a low‐rank inverse update method
title_short Accelerating implant RF safety assessment using a low‐rank inverse update method
title_sort accelerating implant rf safety assessment using a low‐rank inverse update method
topic Radiology, Nuclear Medicine and imaging
url http://dx.doi.org/10.1002/mrm.28023
publishDate 2020
physical 1796-1809
description <jats:sec><jats:title>Purpose</jats:title><jats:p>Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.</jats:p></jats:sec>
container_issue 5
container_start_page 1796
container_title Magnetic Resonance in Medicine
container_volume 83
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792333591592566784
geogr_code not assigned
last_indexed 2024-03-01T14:15:01.07Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Accelerating+implant+RF+safety+assessment+using+a+low%E2%80%90rank+inverse+update+method&rft.date=2020-05-01&genre=article&issn=1522-2594&volume=83&issue=5&spage=1796&epage=1809&pages=1796-1809&jtitle=Magnetic+Resonance+in+Medicine&atitle=Accelerating+implant+RF+safety+assessment+using+a+low%E2%80%90rank+inverse+update+method&aulast=Raaijmakers&aufirst=Alexander+J.+E.&rft_id=info%3Adoi%2F10.1002%2Fmrm.28023&rft.language%5B0%5D=eng
SOLR
_version_ 1792333591592566784
author Stijnman, Peter R. S., Tokaya, Janot P., van Gemert, Jeroen, Luijten, Peter R., Pluim, Josien P. W., Brink, Wyger M., Remis, Rob F., van den Berg, Cornelis A. T., Raaijmakers, Alexander J. E.
author_facet Stijnman, Peter R. S., Tokaya, Janot P., van Gemert, Jeroen, Luijten, Peter R., Pluim, Josien P. W., Brink, Wyger M., Remis, Rob F., van den Berg, Cornelis A. T., Raaijmakers, Alexander J. E., Stijnman, Peter R. S., Tokaya, Janot P., van Gemert, Jeroen, Luijten, Peter R., Pluim, Josien P. W., Brink, Wyger M., Remis, Rob F., van den Berg, Cornelis A. T., Raaijmakers, Alexander J. E.
author_sort stijnman, peter r. s.
container_issue 5
container_start_page 1796
container_title Magnetic Resonance in Medicine
container_volume 83
description <jats:sec><jats:title>Purpose</jats:title><jats:p>Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.</jats:p></jats:sec>
doi_str_mv 10.1002/mrm.28023
facet_avail Online
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9tcm0uMjgwMjM
imprint Wiley, 2020
imprint_str_mv Wiley, 2020
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 0740-3194, 1522-2594
issn_str_mv 0740-3194, 1522-2594
language English
last_indexed 2024-03-01T14:15:01.07Z
match_str stijnman2020acceleratingimplantrfsafetyassessmentusingalowrankinverseupdatemethod
mega_collection Wiley (CrossRef)
physical 1796-1809
publishDate 2020
publishDateSort 2020
publisher Wiley
record_format ai
recordtype ai
series Magnetic Resonance in Medicine
source_id 49
spelling Stijnman, Peter R. S. Tokaya, Janot P. van Gemert, Jeroen Luijten, Peter R. Pluim, Josien P. W. Brink, Wyger M. Remis, Rob F. van den Berg, Cornelis A. T. Raaijmakers, Alexander J. E. 0740-3194 1522-2594 Wiley Radiology, Nuclear Medicine and imaging http://dx.doi.org/10.1002/mrm.28023 <jats:sec><jats:title>Purpose</jats:title><jats:p>Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.</jats:p></jats:sec> Accelerating implant RF safety assessment using a low‐rank inverse update method Magnetic Resonance in Medicine
spellingShingle Stijnman, Peter R. S., Tokaya, Janot P., van Gemert, Jeroen, Luijten, Peter R., Pluim, Josien P. W., Brink, Wyger M., Remis, Rob F., van den Berg, Cornelis A. T., Raaijmakers, Alexander J. E., Magnetic Resonance in Medicine, Accelerating implant RF safety assessment using a low‐rank inverse update method, Radiology, Nuclear Medicine and imaging
title Accelerating implant RF safety assessment using a low‐rank inverse update method
title_full Accelerating implant RF safety assessment using a low‐rank inverse update method
title_fullStr Accelerating implant RF safety assessment using a low‐rank inverse update method
title_full_unstemmed Accelerating implant RF safety assessment using a low‐rank inverse update method
title_short Accelerating implant RF safety assessment using a low‐rank inverse update method
title_sort accelerating implant rf safety assessment using a low‐rank inverse update method
title_unstemmed Accelerating implant RF safety assessment using a low‐rank inverse update method
topic Radiology, Nuclear Medicine and imaging
url http://dx.doi.org/10.1002/mrm.28023