author_facet Dimitrievska, Sashka
Bureau, Martin N.
Antoniou, John
Mwale, Fackson
Petit, Alain
Lima, Rogerio S.
Marple, Basil R.
Dimitrievska, Sashka
Bureau, Martin N.
Antoniou, John
Mwale, Fackson
Petit, Alain
Lima, Rogerio S.
Marple, Basil R.
author Dimitrievska, Sashka
Bureau, Martin N.
Antoniou, John
Mwale, Fackson
Petit, Alain
Lima, Rogerio S.
Marple, Basil R.
spellingShingle Dimitrievska, Sashka
Bureau, Martin N.
Antoniou, John
Mwale, Fackson
Petit, Alain
Lima, Rogerio S.
Marple, Basil R.
Journal of Biomedical Materials Research Part A
Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
Metals and Alloys
Biomedical Engineering
Biomaterials
Ceramics and Composites
author_sort dimitrievska, sashka
spelling Dimitrievska, Sashka Bureau, Martin N. Antoniou, John Mwale, Fackson Petit, Alain Lima, Rogerio S. Marple, Basil R. 1549-3296 1552-4965 Wiley Metals and Alloys Biomedical Engineering Biomaterials Ceramics and Composites http://dx.doi.org/10.1002/jbm.a.32964 <jats:title>Abstract</jats:title><jats:p>In addition to mechanical and chemical stability, the third design goal of the ideal bone‐implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma‐sprayed TiO<jats:sub>2</jats:sub>‐based bone‐implant coatings exhibit excellent long‐term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO<jats:sub>2</jats:sub> nanostructured (grain size &lt;50 nm) based coating charged with 10% wt hydroxyapatite (TiO<jats:sub>2</jats:sub>–HA) sprayed by high‐velocity oxy‐fuel. On Ti64 substrates, the novel TiO<jats:sub>2</jats:sub>–HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro‐ and nano‐sized particles covering the TiO<jats:sub>2</jats:sub>–HA coating surface are chemically bound to the TiO<jats:sub>2</jats:sub> coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO<jats:sub>2</jats:sub>–HA nanocomposite coating surface chemistry, and <jats:italic>in vitro</jats:italic> osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC‐ob). We assessed the following hMSCs and hMSC‐ob parameters over a 3‐week period: (i) proliferation; (ii) cytoskeleton organization and cell–substrate adhesion; (iii) coating–cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO<jats:sub>2</jats:sub>–HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO<jats:sub>2</jats:sub>‐nanostructured surface in addition to the chemically bound HA micron‐ and nano‐sized rod to the surface. hMSCs and hMSC‐ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO<jats:sub>2</jats:sub>–HA coatings, suggesting the TiO<jats:sub>2</jats:sub>–HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC‐ob osteogenic potential better than our current golden standard HA coating. Published 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</jats:p> Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation Journal of Biomedical Materials Research Part A
doi_str_mv 10.1002/jbm.a.32964
facet_avail Online
finc_class_facet Chemie und Pharmazie
Biologie
Medizin
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9qYm0uYS4zMjk2NA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9qYm0uYS4zMjk2NA
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2011
imprint_str_mv Wiley, 2011
issn 1549-3296
1552-4965
issn_str_mv 1549-3296
1552-4965
language English
mega_collection Wiley (CrossRef)
match_str dimitrievska2011titaniahydroxyapatitenanocompositecoatingssupporthumanmesenchymalstemcellsosteogenicdifferentiation
publishDateSort 2011
publisher Wiley
recordtype ai
record_format ai
series Journal of Biomedical Materials Research Part A
source_id 49
title Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_unstemmed Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_full Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_fullStr Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_full_unstemmed Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_short Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_sort titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
topic Metals and Alloys
Biomedical Engineering
Biomaterials
Ceramics and Composites
url http://dx.doi.org/10.1002/jbm.a.32964
publishDate 2011
physical 576-588
description <jats:title>Abstract</jats:title><jats:p>In addition to mechanical and chemical stability, the third design goal of the ideal bone‐implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma‐sprayed TiO<jats:sub>2</jats:sub>‐based bone‐implant coatings exhibit excellent long‐term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO<jats:sub>2</jats:sub> nanostructured (grain size &lt;50 nm) based coating charged with 10% wt hydroxyapatite (TiO<jats:sub>2</jats:sub>–HA) sprayed by high‐velocity oxy‐fuel. On Ti64 substrates, the novel TiO<jats:sub>2</jats:sub>–HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro‐ and nano‐sized particles covering the TiO<jats:sub>2</jats:sub>–HA coating surface are chemically bound to the TiO<jats:sub>2</jats:sub> coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO<jats:sub>2</jats:sub>–HA nanocomposite coating surface chemistry, and <jats:italic>in vitro</jats:italic> osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC‐ob). We assessed the following hMSCs and hMSC‐ob parameters over a 3‐week period: (i) proliferation; (ii) cytoskeleton organization and cell–substrate adhesion; (iii) coating–cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO<jats:sub>2</jats:sub>–HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO<jats:sub>2</jats:sub>‐nanostructured surface in addition to the chemically bound HA micron‐ and nano‐sized rod to the surface. hMSCs and hMSC‐ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO<jats:sub>2</jats:sub>–HA coatings, suggesting the TiO<jats:sub>2</jats:sub>–HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC‐ob osteogenic potential better than our current golden standard HA coating. Published 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</jats:p>
container_issue 4
container_start_page 576
container_title Journal of Biomedical Materials Research Part A
container_volume 98A
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792341988144578563
geogr_code not assigned
last_indexed 2024-03-01T16:28:06.037Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Titania%E2%80%93hydroxyapatite+nanocomposite+coatings+support+human+mesenchymal+stem+cells+osteogenic+differentiation&rft.date=2011-09-15&genre=article&issn=1552-4965&volume=98A&issue=4&spage=576&epage=588&pages=576-588&jtitle=Journal+of+Biomedical+Materials+Research+Part+A&atitle=Titania%E2%80%93hydroxyapatite+nanocomposite+coatings+support+human+mesenchymal+stem+cells+osteogenic+differentiation&aulast=Marple&aufirst=Basil+R.&rft_id=info%3Adoi%2F10.1002%2Fjbm.a.32964&rft.language%5B0%5D=eng
SOLR
_version_ 1792341988144578563
author Dimitrievska, Sashka, Bureau, Martin N., Antoniou, John, Mwale, Fackson, Petit, Alain, Lima, Rogerio S., Marple, Basil R.
author_facet Dimitrievska, Sashka, Bureau, Martin N., Antoniou, John, Mwale, Fackson, Petit, Alain, Lima, Rogerio S., Marple, Basil R., Dimitrievska, Sashka, Bureau, Martin N., Antoniou, John, Mwale, Fackson, Petit, Alain, Lima, Rogerio S., Marple, Basil R.
author_sort dimitrievska, sashka
container_issue 4
container_start_page 576
container_title Journal of Biomedical Materials Research Part A
container_volume 98A
description <jats:title>Abstract</jats:title><jats:p>In addition to mechanical and chemical stability, the third design goal of the ideal bone‐implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma‐sprayed TiO<jats:sub>2</jats:sub>‐based bone‐implant coatings exhibit excellent long‐term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO<jats:sub>2</jats:sub> nanostructured (grain size &lt;50 nm) based coating charged with 10% wt hydroxyapatite (TiO<jats:sub>2</jats:sub>–HA) sprayed by high‐velocity oxy‐fuel. On Ti64 substrates, the novel TiO<jats:sub>2</jats:sub>–HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro‐ and nano‐sized particles covering the TiO<jats:sub>2</jats:sub>–HA coating surface are chemically bound to the TiO<jats:sub>2</jats:sub> coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO<jats:sub>2</jats:sub>–HA nanocomposite coating surface chemistry, and <jats:italic>in vitro</jats:italic> osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC‐ob). We assessed the following hMSCs and hMSC‐ob parameters over a 3‐week period: (i) proliferation; (ii) cytoskeleton organization and cell–substrate adhesion; (iii) coating–cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO<jats:sub>2</jats:sub>–HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO<jats:sub>2</jats:sub>‐nanostructured surface in addition to the chemically bound HA micron‐ and nano‐sized rod to the surface. hMSCs and hMSC‐ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO<jats:sub>2</jats:sub>–HA coatings, suggesting the TiO<jats:sub>2</jats:sub>–HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC‐ob osteogenic potential better than our current golden standard HA coating. Published 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</jats:p>
doi_str_mv 10.1002/jbm.a.32964
facet_avail Online
finc_class_facet Chemie und Pharmazie, Biologie, Medizin, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9qYm0uYS4zMjk2NA
imprint Wiley, 2011
imprint_str_mv Wiley, 2011
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 1549-3296, 1552-4965
issn_str_mv 1549-3296, 1552-4965
language English
last_indexed 2024-03-01T16:28:06.037Z
match_str dimitrievska2011titaniahydroxyapatitenanocompositecoatingssupporthumanmesenchymalstemcellsosteogenicdifferentiation
mega_collection Wiley (CrossRef)
physical 576-588
publishDate 2011
publishDateSort 2011
publisher Wiley
record_format ai
recordtype ai
series Journal of Biomedical Materials Research Part A
source_id 49
spelling Dimitrievska, Sashka Bureau, Martin N. Antoniou, John Mwale, Fackson Petit, Alain Lima, Rogerio S. Marple, Basil R. 1549-3296 1552-4965 Wiley Metals and Alloys Biomedical Engineering Biomaterials Ceramics and Composites http://dx.doi.org/10.1002/jbm.a.32964 <jats:title>Abstract</jats:title><jats:p>In addition to mechanical and chemical stability, the third design goal of the ideal bone‐implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma‐sprayed TiO<jats:sub>2</jats:sub>‐based bone‐implant coatings exhibit excellent long‐term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO<jats:sub>2</jats:sub> nanostructured (grain size &lt;50 nm) based coating charged with 10% wt hydroxyapatite (TiO<jats:sub>2</jats:sub>–HA) sprayed by high‐velocity oxy‐fuel. On Ti64 substrates, the novel TiO<jats:sub>2</jats:sub>–HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro‐ and nano‐sized particles covering the TiO<jats:sub>2</jats:sub>–HA coating surface are chemically bound to the TiO<jats:sub>2</jats:sub> coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO<jats:sub>2</jats:sub>–HA nanocomposite coating surface chemistry, and <jats:italic>in vitro</jats:italic> osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC‐ob). We assessed the following hMSCs and hMSC‐ob parameters over a 3‐week period: (i) proliferation; (ii) cytoskeleton organization and cell–substrate adhesion; (iii) coating–cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO<jats:sub>2</jats:sub>–HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO<jats:sub>2</jats:sub>‐nanostructured surface in addition to the chemically bound HA micron‐ and nano‐sized rod to the surface. hMSCs and hMSC‐ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO<jats:sub>2</jats:sub>–HA coatings, suggesting the TiO<jats:sub>2</jats:sub>–HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC‐ob osteogenic potential better than our current golden standard HA coating. Published 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</jats:p> Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation Journal of Biomedical Materials Research Part A
spellingShingle Dimitrievska, Sashka, Bureau, Martin N., Antoniou, John, Mwale, Fackson, Petit, Alain, Lima, Rogerio S., Marple, Basil R., Journal of Biomedical Materials Research Part A, Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation, Metals and Alloys, Biomedical Engineering, Biomaterials, Ceramics and Composites
title Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_full Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_fullStr Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_full_unstemmed Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_short Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_sort titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
title_unstemmed Titania–hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation
topic Metals and Alloys, Biomedical Engineering, Biomaterials, Ceramics and Composites
url http://dx.doi.org/10.1002/jbm.a.32964