author_facet Dubrovina, Natalia V.
Jiao, Haijun
Tararov, Vitali I.
Spannenberg, Anke
Kadyrov, Renat
Monsees, Axel
Christiansen, Andrea
Börner, Armin
Dubrovina, Natalia V.
Jiao, Haijun
Tararov, Vitali I.
Spannenberg, Anke
Kadyrov, Renat
Monsees, Axel
Christiansen, Andrea
Börner, Armin
author Dubrovina, Natalia V.
Jiao, Haijun
Tararov, Vitali I.
Spannenberg, Anke
Kadyrov, Renat
Monsees, Axel
Christiansen, Andrea
Börner, Armin
spellingShingle Dubrovina, Natalia V.
Jiao, Haijun
Tararov, Vitali I.
Spannenberg, Anke
Kadyrov, Renat
Monsees, Axel
Christiansen, Andrea
Börner, Armin
European Journal of Organic Chemistry
A New Access to Chiral Phospholanes
Organic Chemistry
Physical and Theoretical Chemistry
author_sort dubrovina, natalia v.
spelling Dubrovina, Natalia V. Jiao, Haijun Tararov, Vitali I. Spannenberg, Anke Kadyrov, Renat Monsees, Axel Christiansen, Andrea Börner, Armin 1434-193X 1099-0690 Wiley Organic Chemistry Physical and Theoretical Chemistry http://dx.doi.org/10.1002/ejoc.200600143 <jats:title>Abstract</jats:title><jats:p>The hydrogenation of 5‐oxo‐5<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol gives, almost quantitatively, only one geometric isomer of 5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2</jats:bold>). An X‐ray structure analysis confirmed the formation of a <jats:italic>meso</jats:italic> isomer with a 4aβ,5aβ,9aβ,9bβ configuration (<jats:bold>2a</jats:bold>). Another possible way to get <jats:bold>2a</jats:bold> is the hydrogenation of (4aβ,5aβ)‐5‐oxo‐2,3,4,4a,5,5a,6,7,8,9‐decahydro‐1<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>11</jats:bold>), which is easily available starting from cyclohexanone. Highly selective epimerization has been achieved using LDA as base at elevated temperature. Resolution of <jats:bold>2e</jats:bold> was achieved by salt formation with (<jats:italic>R</jats:italic>)‐(+)‐ and (<jats:italic>S</jats:italic>)‐(–)‐<jats:italic>N</jats:italic>‐benzyl‐α‐methylbenzylamine to give (+)‐ and (–)‐(4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol. The geometry of <jats:bold>2e</jats:bold> was confirmed by X‐ray structure analysis. Reduction of (+)‐ or (–)‐<jats:bold>2e</jats:bold> gave diastereomeric phospholanes (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole (<jats:bold>1a</jats:bold>), which were oxidized to the corresponding secondary phosphane oxides (SPOs) (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole 5‐oxide (<jats:bold>1b</jats:bold>). These phosphanes and phosphane oxides were used as ligands and preligands, respectively, in the Rh‐catalyzed enantioselective hydrogenation of benchmark substrates, where up to 79 % <jats:italic>ee</jats:italic> have been achieved. B3LYP density functional calculations reveal that among the three possible epimers at the <jats:sup>4a</jats:sup>C‐ and <jats:sup>5a</jats:sup>C‐positions the<jats:italic>chiral</jats:italic> isomer (4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2e</jats:bold>) is 3.52 kcal mol<jats:sup>–1</jats:sup> more stable than the related <jats:italic>meso</jats:italic> isomer <jats:bold>2a</jats:bold> in Gibbs free energy. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2006)</jats:p> A New Access to Chiral Phospholanes European Journal of Organic Chemistry
doi_str_mv 10.1002/ejoc.200600143
facet_avail Online
finc_class_facet Chemie und Pharmazie
Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9lam9jLjIwMDYwMDE0Mw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9lam9jLjIwMDYwMDE0Mw
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2006
imprint_str_mv Wiley, 2006
issn 1434-193X
1099-0690
issn_str_mv 1434-193X
1099-0690
language English
mega_collection Wiley (CrossRef)
match_str dubrovina2006anewaccesstochiralphospholanes
publishDateSort 2006
publisher Wiley
recordtype ai
record_format ai
series European Journal of Organic Chemistry
source_id 49
title A New Access to Chiral Phospholanes
title_unstemmed A New Access to Chiral Phospholanes
title_full A New Access to Chiral Phospholanes
title_fullStr A New Access to Chiral Phospholanes
title_full_unstemmed A New Access to Chiral Phospholanes
title_short A New Access to Chiral Phospholanes
title_sort a new access to chiral phospholanes
topic Organic Chemistry
Physical and Theoretical Chemistry
url http://dx.doi.org/10.1002/ejoc.200600143
publishDate 2006
physical 3412-3420
description <jats:title>Abstract</jats:title><jats:p>The hydrogenation of 5‐oxo‐5<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol gives, almost quantitatively, only one geometric isomer of 5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2</jats:bold>). An X‐ray structure analysis confirmed the formation of a <jats:italic>meso</jats:italic> isomer with a 4aβ,5aβ,9aβ,9bβ configuration (<jats:bold>2a</jats:bold>). Another possible way to get <jats:bold>2a</jats:bold> is the hydrogenation of (4aβ,5aβ)‐5‐oxo‐2,3,4,4a,5,5a,6,7,8,9‐decahydro‐1<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>11</jats:bold>), which is easily available starting from cyclohexanone. Highly selective epimerization has been achieved using LDA as base at elevated temperature. Resolution of <jats:bold>2e</jats:bold> was achieved by salt formation with (<jats:italic>R</jats:italic>)‐(+)‐ and (<jats:italic>S</jats:italic>)‐(–)‐<jats:italic>N</jats:italic>‐benzyl‐α‐methylbenzylamine to give (+)‐ and (–)‐(4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol. The geometry of <jats:bold>2e</jats:bold> was confirmed by X‐ray structure analysis. Reduction of (+)‐ or (–)‐<jats:bold>2e</jats:bold> gave diastereomeric phospholanes (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole (<jats:bold>1a</jats:bold>), which were oxidized to the corresponding secondary phosphane oxides (SPOs) (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole 5‐oxide (<jats:bold>1b</jats:bold>). These phosphanes and phosphane oxides were used as ligands and preligands, respectively, in the Rh‐catalyzed enantioselective hydrogenation of benchmark substrates, where up to 79 % <jats:italic>ee</jats:italic> have been achieved. B3LYP density functional calculations reveal that among the three possible epimers at the <jats:sup>4a</jats:sup>C‐ and <jats:sup>5a</jats:sup>C‐positions the<jats:italic>chiral</jats:italic> isomer (4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2e</jats:bold>) is 3.52 kcal mol<jats:sup>–1</jats:sup> more stable than the related <jats:italic>meso</jats:italic> isomer <jats:bold>2a</jats:bold> in Gibbs free energy. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2006)</jats:p>
container_issue 15
container_start_page 3412
container_title European Journal of Organic Chemistry
container_volume 2006
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792336060804497420
geogr_code not assigned
last_indexed 2024-03-01T14:54:08.45Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=A+New+Access+to+Chiral+Phospholanes&rft.date=2006-08-01&genre=article&issn=1099-0690&volume=2006&issue=15&spage=3412&epage=3420&pages=3412-3420&jtitle=European+Journal+of+Organic+Chemistry&atitle=A+New+Access+to+Chiral+Phospholanes&aulast=B%C3%B6rner&aufirst=Armin&rft_id=info%3Adoi%2F10.1002%2Fejoc.200600143&rft.language%5B0%5D=eng
SOLR
_version_ 1792336060804497420
author Dubrovina, Natalia V., Jiao, Haijun, Tararov, Vitali I., Spannenberg, Anke, Kadyrov, Renat, Monsees, Axel, Christiansen, Andrea, Börner, Armin
author_facet Dubrovina, Natalia V., Jiao, Haijun, Tararov, Vitali I., Spannenberg, Anke, Kadyrov, Renat, Monsees, Axel, Christiansen, Andrea, Börner, Armin, Dubrovina, Natalia V., Jiao, Haijun, Tararov, Vitali I., Spannenberg, Anke, Kadyrov, Renat, Monsees, Axel, Christiansen, Andrea, Börner, Armin
author_sort dubrovina, natalia v.
container_issue 15
container_start_page 3412
container_title European Journal of Organic Chemistry
container_volume 2006
description <jats:title>Abstract</jats:title><jats:p>The hydrogenation of 5‐oxo‐5<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol gives, almost quantitatively, only one geometric isomer of 5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2</jats:bold>). An X‐ray structure analysis confirmed the formation of a <jats:italic>meso</jats:italic> isomer with a 4aβ,5aβ,9aβ,9bβ configuration (<jats:bold>2a</jats:bold>). Another possible way to get <jats:bold>2a</jats:bold> is the hydrogenation of (4aβ,5aβ)‐5‐oxo‐2,3,4,4a,5,5a,6,7,8,9‐decahydro‐1<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>11</jats:bold>), which is easily available starting from cyclohexanone. Highly selective epimerization has been achieved using LDA as base at elevated temperature. Resolution of <jats:bold>2e</jats:bold> was achieved by salt formation with (<jats:italic>R</jats:italic>)‐(+)‐ and (<jats:italic>S</jats:italic>)‐(–)‐<jats:italic>N</jats:italic>‐benzyl‐α‐methylbenzylamine to give (+)‐ and (–)‐(4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol. The geometry of <jats:bold>2e</jats:bold> was confirmed by X‐ray structure analysis. Reduction of (+)‐ or (–)‐<jats:bold>2e</jats:bold> gave diastereomeric phospholanes (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole (<jats:bold>1a</jats:bold>), which were oxidized to the corresponding secondary phosphane oxides (SPOs) (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole 5‐oxide (<jats:bold>1b</jats:bold>). These phosphanes and phosphane oxides were used as ligands and preligands, respectively, in the Rh‐catalyzed enantioselective hydrogenation of benchmark substrates, where up to 79 % <jats:italic>ee</jats:italic> have been achieved. B3LYP density functional calculations reveal that among the three possible epimers at the <jats:sup>4a</jats:sup>C‐ and <jats:sup>5a</jats:sup>C‐positions the<jats:italic>chiral</jats:italic> isomer (4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2e</jats:bold>) is 3.52 kcal mol<jats:sup>–1</jats:sup> more stable than the related <jats:italic>meso</jats:italic> isomer <jats:bold>2a</jats:bold> in Gibbs free energy. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2006)</jats:p>
doi_str_mv 10.1002/ejoc.200600143
facet_avail Online
finc_class_facet Chemie und Pharmazie, Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9lam9jLjIwMDYwMDE0Mw
imprint Wiley, 2006
imprint_str_mv Wiley, 2006
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 1434-193X, 1099-0690
issn_str_mv 1434-193X, 1099-0690
language English
last_indexed 2024-03-01T14:54:08.45Z
match_str dubrovina2006anewaccesstochiralphospholanes
mega_collection Wiley (CrossRef)
physical 3412-3420
publishDate 2006
publishDateSort 2006
publisher Wiley
record_format ai
recordtype ai
series European Journal of Organic Chemistry
source_id 49
spelling Dubrovina, Natalia V. Jiao, Haijun Tararov, Vitali I. Spannenberg, Anke Kadyrov, Renat Monsees, Axel Christiansen, Andrea Börner, Armin 1434-193X 1099-0690 Wiley Organic Chemistry Physical and Theoretical Chemistry http://dx.doi.org/10.1002/ejoc.200600143 <jats:title>Abstract</jats:title><jats:p>The hydrogenation of 5‐oxo‐5<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol gives, almost quantitatively, only one geometric isomer of 5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2</jats:bold>). An X‐ray structure analysis confirmed the formation of a <jats:italic>meso</jats:italic> isomer with a 4aβ,5aβ,9aβ,9bβ configuration (<jats:bold>2a</jats:bold>). Another possible way to get <jats:bold>2a</jats:bold> is the hydrogenation of (4aβ,5aβ)‐5‐oxo‐2,3,4,4a,5,5a,6,7,8,9‐decahydro‐1<jats:italic>H</jats:italic>‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>11</jats:bold>), which is easily available starting from cyclohexanone. Highly selective epimerization has been achieved using LDA as base at elevated temperature. Resolution of <jats:bold>2e</jats:bold> was achieved by salt formation with (<jats:italic>R</jats:italic>)‐(+)‐ and (<jats:italic>S</jats:italic>)‐(–)‐<jats:italic>N</jats:italic>‐benzyl‐α‐methylbenzylamine to give (+)‐ and (–)‐(4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol. The geometry of <jats:bold>2e</jats:bold> was confirmed by X‐ray structure analysis. Reduction of (+)‐ or (–)‐<jats:bold>2e</jats:bold> gave diastereomeric phospholanes (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole (<jats:bold>1a</jats:bold>), which were oxidized to the corresponding secondary phosphane oxides (SPOs) (4aα,5<jats:italic>R</jats:italic>/<jats:italic>S</jats:italic>,5aβ,9aβ,9bβ)‐dodecahydrodibenzophosphole 5‐oxide (<jats:bold>1b</jats:bold>). These phosphanes and phosphane oxides were used as ligands and preligands, respectively, in the Rh‐catalyzed enantioselective hydrogenation of benchmark substrates, where up to 79 % <jats:italic>ee</jats:italic> have been achieved. B3LYP density functional calculations reveal that among the three possible epimers at the <jats:sup>4a</jats:sup>C‐ and <jats:sup>5a</jats:sup>C‐positions the<jats:italic>chiral</jats:italic> isomer (4aα,5aβ,9aβ,9bβ)‐5‐oxododecahydro‐5λ<jats:sup>5</jats:sup>‐dibenzophosphol‐5‐ol (<jats:bold>2e</jats:bold>) is 3.52 kcal mol<jats:sup>–1</jats:sup> more stable than the related <jats:italic>meso</jats:italic> isomer <jats:bold>2a</jats:bold> in Gibbs free energy. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2006)</jats:p> A New Access to Chiral Phospholanes European Journal of Organic Chemistry
spellingShingle Dubrovina, Natalia V., Jiao, Haijun, Tararov, Vitali I., Spannenberg, Anke, Kadyrov, Renat, Monsees, Axel, Christiansen, Andrea, Börner, Armin, European Journal of Organic Chemistry, A New Access to Chiral Phospholanes, Organic Chemistry, Physical and Theoretical Chemistry
title A New Access to Chiral Phospholanes
title_full A New Access to Chiral Phospholanes
title_fullStr A New Access to Chiral Phospholanes
title_full_unstemmed A New Access to Chiral Phospholanes
title_short A New Access to Chiral Phospholanes
title_sort a new access to chiral phospholanes
title_unstemmed A New Access to Chiral Phospholanes
topic Organic Chemistry, Physical and Theoretical Chemistry
url http://dx.doi.org/10.1002/ejoc.200600143