author_facet Fugariu, Ioana
Bermel, Wolfgang
Lane, Daniel
Soong, Ronald
Simpson, Andre J.
Fugariu, Ioana
Bermel, Wolfgang
Lane, Daniel
Soong, Ronald
Simpson, Andre J.
author Fugariu, Ioana
Bermel, Wolfgang
Lane, Daniel
Soong, Ronald
Simpson, Andre J.
spellingShingle Fugariu, Ioana
Bermel, Wolfgang
Lane, Daniel
Soong, Ronald
Simpson, Andre J.
Angewandte Chemie International Edition
In‐Phase Ultra High‐Resolution In Vivo NMR
General Chemistry
Catalysis
author_sort fugariu, ioana
spelling Fugariu, Ioana Bermel, Wolfgang Lane, Daniel Soong, Ronald Simpson, Andre J. 1433-7851 1521-3773 Wiley General Chemistry Catalysis http://dx.doi.org/10.1002/anie.201701097 <jats:title>Abstract</jats:title><jats:p>Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high‐resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non‐phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in‐phase iSQC (IP‐iSQC) is introduced. When applied to a living system, high‐resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high‐resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.</jats:p> In‐Phase Ultra High‐Resolution In Vivo NMR Angewandte Chemie International Edition
doi_str_mv 10.1002/anie.201701097
facet_avail Online
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hbmllLjIwMTcwMTA5Nw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hbmllLjIwMTcwMTA5Nw
institution DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
imprint Wiley, 2017
imprint_str_mv Wiley, 2017
issn 1433-7851
1521-3773
issn_str_mv 1433-7851
1521-3773
language English
mega_collection Wiley (CrossRef)
match_str fugariu2017inphaseultrahighresolutioninvivonmr
publishDateSort 2017
publisher Wiley
recordtype ai
record_format ai
series Angewandte Chemie International Edition
source_id 49
title In‐Phase Ultra High‐Resolution In Vivo NMR
title_unstemmed In‐Phase Ultra High‐Resolution In Vivo NMR
title_full In‐Phase Ultra High‐Resolution In Vivo NMR
title_fullStr In‐Phase Ultra High‐Resolution In Vivo NMR
title_full_unstemmed In‐Phase Ultra High‐Resolution In Vivo NMR
title_short In‐Phase Ultra High‐Resolution In Vivo NMR
title_sort in‐phase ultra high‐resolution in vivo nmr
topic General Chemistry
Catalysis
url http://dx.doi.org/10.1002/anie.201701097
publishDate 2017
physical 6324-6328
description <jats:title>Abstract</jats:title><jats:p>Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high‐resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non‐phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in‐phase iSQC (IP‐iSQC) is introduced. When applied to a living system, high‐resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high‐resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.</jats:p>
container_issue 22
container_start_page 6324
container_title Angewandte Chemie International Edition
container_volume 56
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792340480550240266
geogr_code not assigned
last_indexed 2024-03-01T16:04:17.58Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=In%E2%80%90Phase+Ultra+High%E2%80%90Resolution+In+Vivo+NMR&rft.date=2017-05-22&genre=article&issn=1521-3773&volume=56&issue=22&spage=6324&epage=6328&pages=6324-6328&jtitle=Angewandte+Chemie+International+Edition&atitle=In%E2%80%90Phase+Ultra+High%E2%80%90Resolution+In+Vivo+NMR&aulast=Simpson&aufirst=Andre+J.&rft_id=info%3Adoi%2F10.1002%2Fanie.201701097&rft.language%5B0%5D=eng
SOLR
_version_ 1792340480550240266
author Fugariu, Ioana, Bermel, Wolfgang, Lane, Daniel, Soong, Ronald, Simpson, Andre J.
author_facet Fugariu, Ioana, Bermel, Wolfgang, Lane, Daniel, Soong, Ronald, Simpson, Andre J., Fugariu, Ioana, Bermel, Wolfgang, Lane, Daniel, Soong, Ronald, Simpson, Andre J.
author_sort fugariu, ioana
container_issue 22
container_start_page 6324
container_title Angewandte Chemie International Edition
container_volume 56
description <jats:title>Abstract</jats:title><jats:p>Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high‐resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non‐phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in‐phase iSQC (IP‐iSQC) is introduced. When applied to a living system, high‐resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high‐resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.</jats:p>
doi_str_mv 10.1002/anie.201701097
facet_avail Online
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hbmllLjIwMTcwMTA5Nw
imprint Wiley, 2017
imprint_str_mv Wiley, 2017
institution DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161
issn 1433-7851, 1521-3773
issn_str_mv 1433-7851, 1521-3773
language English
last_indexed 2024-03-01T16:04:17.58Z
match_str fugariu2017inphaseultrahighresolutioninvivonmr
mega_collection Wiley (CrossRef)
physical 6324-6328
publishDate 2017
publishDateSort 2017
publisher Wiley
record_format ai
recordtype ai
series Angewandte Chemie International Edition
source_id 49
spelling Fugariu, Ioana Bermel, Wolfgang Lane, Daniel Soong, Ronald Simpson, Andre J. 1433-7851 1521-3773 Wiley General Chemistry Catalysis http://dx.doi.org/10.1002/anie.201701097 <jats:title>Abstract</jats:title><jats:p>Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high‐resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non‐phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in‐phase iSQC (IP‐iSQC) is introduced. When applied to a living system, high‐resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high‐resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.</jats:p> In‐Phase Ultra High‐Resolution In Vivo NMR Angewandte Chemie International Edition
spellingShingle Fugariu, Ioana, Bermel, Wolfgang, Lane, Daniel, Soong, Ronald, Simpson, Andre J., Angewandte Chemie International Edition, In‐Phase Ultra High‐Resolution In Vivo NMR, General Chemistry, Catalysis
title In‐Phase Ultra High‐Resolution In Vivo NMR
title_full In‐Phase Ultra High‐Resolution In Vivo NMR
title_fullStr In‐Phase Ultra High‐Resolution In Vivo NMR
title_full_unstemmed In‐Phase Ultra High‐Resolution In Vivo NMR
title_short In‐Phase Ultra High‐Resolution In Vivo NMR
title_sort in‐phase ultra high‐resolution in vivo nmr
title_unstemmed In‐Phase Ultra High‐Resolution In Vivo NMR
topic General Chemistry, Catalysis
url http://dx.doi.org/10.1002/anie.201701097