author_facet Jaishankar, Aditya
McKinley, Gareth H.
Jaishankar, Aditya
McKinley, Gareth H.
author Jaishankar, Aditya
McKinley, Gareth H.
spellingShingle Jaishankar, Aditya
McKinley, Gareth H.
AIChE Journal
An analytical solution to the extended Navier–Stokes equations using the Lambert W function
General Chemical Engineering
Environmental Engineering
Biotechnology
author_sort jaishankar, aditya
spelling Jaishankar, Aditya McKinley, Gareth H. 0001-1541 1547-5905 Wiley General Chemical Engineering Environmental Engineering Biotechnology http://dx.doi.org/10.1002/aic.14407 <jats:p>Microchannel gas flows are of importance in a wide range of microelectro mechanical devices. In these flows, the mean free path of the gas can be comparable to the characteristic length of the microchannel, leading to strong diffusion‐enhanced transport of momentum. Numerical solutions to the extended Navier–Stokes equations (ENSE) have successfully modeled such microchannel flows. Analytical solutions to the ENSE for the pressure and velocity fields using the Lambert <jats:italic>W</jats:italic> function are derived. We find that diffusive contributions to the total transport are only dominant for low average pressures and low pressure drops across the microchannel. For large inlet pressures, we show that the expressions involving the Lambert W function predict steep gradients in the pressure and velocity localized near the channel exit. We extract a characteristic length for this boundary layer. Our analytical results are validated by numerical and experimental results available in the literature. © 2014 American Institute of Chemical Engineers <jats:italic>AIChE J</jats:italic>, 60: 1413–1423, 2014</jats:p> An analytical solution to the extended Navier–Stokes equations using the Lambert <i>W</i> function AIChE Journal
doi_str_mv 10.1002/aic.14407
facet_avail Online
finc_class_facet Technik
Geographie
Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9haWMuMTQ0MDc
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9haWMuMTQ0MDc
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Wiley, 2014
imprint_str_mv Wiley, 2014
issn 0001-1541
1547-5905
issn_str_mv 0001-1541
1547-5905
language English
mega_collection Wiley (CrossRef)
match_str jaishankar2014ananalyticalsolutiontotheextendednavierstokesequationsusingthelambertwfunction
publishDateSort 2014
publisher Wiley
recordtype ai
record_format ai
series AIChE Journal
source_id 49
title An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_unstemmed An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_full An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_fullStr An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_full_unstemmed An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_short An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_sort an analytical solution to the extended navier–stokes equations using the lambert <i>w</i> function
topic General Chemical Engineering
Environmental Engineering
Biotechnology
url http://dx.doi.org/10.1002/aic.14407
publishDate 2014
physical 1413-1423
description <jats:p>Microchannel gas flows are of importance in a wide range of microelectro mechanical devices. In these flows, the mean free path of the gas can be comparable to the characteristic length of the microchannel, leading to strong diffusion‐enhanced transport of momentum. Numerical solutions to the extended Navier–Stokes equations (ENSE) have successfully modeled such microchannel flows. Analytical solutions to the ENSE for the pressure and velocity fields using the Lambert <jats:italic>W</jats:italic> function are derived. We find that diffusive contributions to the total transport are only dominant for low average pressures and low pressure drops across the microchannel. For large inlet pressures, we show that the expressions involving the Lambert W function predict steep gradients in the pressure and velocity localized near the channel exit. We extract a characteristic length for this boundary layer. Our analytical results are validated by numerical and experimental results available in the literature. © 2014 American Institute of Chemical Engineers <jats:italic>AIChE J</jats:italic>, 60: 1413–1423, 2014</jats:p>
container_issue 4
container_start_page 1413
container_title AIChE Journal
container_volume 60
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792335205322719232
geogr_code not assigned
last_indexed 2024-03-01T14:40:51.047Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=An+analytical+solution+to+the+extended+Navier%E2%80%93Stokes+equations+using+the+Lambert+W+function&rft.date=2014-04-01&genre=article&issn=1547-5905&volume=60&issue=4&spage=1413&epage=1423&pages=1413-1423&jtitle=AIChE+Journal&atitle=An+analytical+solution+to+the+extended+Navier%E2%80%93Stokes+equations+using+the+Lambert+%3Ci%3EW%3C%2Fi%3E+function&aulast=McKinley&aufirst=Gareth+H.&rft_id=info%3Adoi%2F10.1002%2Faic.14407&rft.language%5B0%5D=eng
SOLR
_version_ 1792335205322719232
author Jaishankar, Aditya, McKinley, Gareth H.
author_facet Jaishankar, Aditya, McKinley, Gareth H., Jaishankar, Aditya, McKinley, Gareth H.
author_sort jaishankar, aditya
container_issue 4
container_start_page 1413
container_title AIChE Journal
container_volume 60
description <jats:p>Microchannel gas flows are of importance in a wide range of microelectro mechanical devices. In these flows, the mean free path of the gas can be comparable to the characteristic length of the microchannel, leading to strong diffusion‐enhanced transport of momentum. Numerical solutions to the extended Navier–Stokes equations (ENSE) have successfully modeled such microchannel flows. Analytical solutions to the ENSE for the pressure and velocity fields using the Lambert <jats:italic>W</jats:italic> function are derived. We find that diffusive contributions to the total transport are only dominant for low average pressures and low pressure drops across the microchannel. For large inlet pressures, we show that the expressions involving the Lambert W function predict steep gradients in the pressure and velocity localized near the channel exit. We extract a characteristic length for this boundary layer. Our analytical results are validated by numerical and experimental results available in the literature. © 2014 American Institute of Chemical Engineers <jats:italic>AIChE J</jats:italic>, 60: 1413–1423, 2014</jats:p>
doi_str_mv 10.1002/aic.14407
facet_avail Online
finc_class_facet Technik, Geographie, Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9haWMuMTQ0MDc
imprint Wiley, 2014
imprint_str_mv Wiley, 2014
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 0001-1541, 1547-5905
issn_str_mv 0001-1541, 1547-5905
language English
last_indexed 2024-03-01T14:40:51.047Z
match_str jaishankar2014ananalyticalsolutiontotheextendednavierstokesequationsusingthelambertwfunction
mega_collection Wiley (CrossRef)
physical 1413-1423
publishDate 2014
publishDateSort 2014
publisher Wiley
record_format ai
recordtype ai
series AIChE Journal
source_id 49
spelling Jaishankar, Aditya McKinley, Gareth H. 0001-1541 1547-5905 Wiley General Chemical Engineering Environmental Engineering Biotechnology http://dx.doi.org/10.1002/aic.14407 <jats:p>Microchannel gas flows are of importance in a wide range of microelectro mechanical devices. In these flows, the mean free path of the gas can be comparable to the characteristic length of the microchannel, leading to strong diffusion‐enhanced transport of momentum. Numerical solutions to the extended Navier–Stokes equations (ENSE) have successfully modeled such microchannel flows. Analytical solutions to the ENSE for the pressure and velocity fields using the Lambert <jats:italic>W</jats:italic> function are derived. We find that diffusive contributions to the total transport are only dominant for low average pressures and low pressure drops across the microchannel. For large inlet pressures, we show that the expressions involving the Lambert W function predict steep gradients in the pressure and velocity localized near the channel exit. We extract a characteristic length for this boundary layer. Our analytical results are validated by numerical and experimental results available in the literature. © 2014 American Institute of Chemical Engineers <jats:italic>AIChE J</jats:italic>, 60: 1413–1423, 2014</jats:p> An analytical solution to the extended Navier–Stokes equations using the Lambert <i>W</i> function AIChE Journal
spellingShingle Jaishankar, Aditya, McKinley, Gareth H., AIChE Journal, An analytical solution to the extended Navier–Stokes equations using the Lambert W function, General Chemical Engineering, Environmental Engineering, Biotechnology
title An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_full An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_fullStr An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_full_unstemmed An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_short An analytical solution to the extended Navier–Stokes equations using the Lambert W function
title_sort an analytical solution to the extended navier–stokes equations using the lambert <i>w</i> function
title_unstemmed An analytical solution to the extended Navier–Stokes equations using the Lambert W function
topic General Chemical Engineering, Environmental Engineering, Biotechnology
url http://dx.doi.org/10.1002/aic.14407