author_facet Lu, Chengjie
Yang, Li
Yan, Bingzhen
Sun, Liangbo
Zhang, Peigen
Zhang, Wei
Sun, ZhengMing
Lu, Chengjie
Yang, Li
Yan, Bingzhen
Sun, Liangbo
Zhang, Peigen
Zhang, Wei
Sun, ZhengMing
author Lu, Chengjie
Yang, Li
Yan, Bingzhen
Sun, Liangbo
Zhang, Peigen
Zhang, Wei
Sun, ZhengMing
spellingShingle Lu, Chengjie
Yang, Li
Yan, Bingzhen
Sun, Liangbo
Zhang, Peigen
Zhang, Wei
Sun, ZhengMing
Advanced Functional Materials
Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
author_sort lu, chengjie
spelling Lu, Chengjie Yang, Li Yan, Bingzhen Sun, Liangbo Zhang, Peigen Zhang, Wei Sun, ZhengMing 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.202000852 <jats:title>Abstract</jats:title><jats:p>Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for –OH), and surface absorption (on –O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.</jats:p> Nitrogen‐Doped Ti<sub>3</sub>C<sub>2</sub> MXene: Mechanism Investigation and Electrochemical Analysis Advanced Functional Materials
doi_str_mv 10.1002/adfm.202000852
facet_avail Online
finc_class_facet Physik
Chemie und Pharmazie
Biologie
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMjAwMDg1Mg
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMjAwMDg1Mg
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Wiley, 2020
imprint_str_mv Wiley, 2020
issn 1616-301X
1616-3028
issn_str_mv 1616-301X
1616-3028
language English
mega_collection Wiley (CrossRef)
match_str lu2020nitrogendopedti3c2mxenemechanisminvestigationandelectrochemicalanalysis
publishDateSort 2020
publisher Wiley
recordtype ai
record_format ai
series Advanced Functional Materials
source_id 49
title Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_unstemmed Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_full Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_fullStr Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_full_unstemmed Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_short Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_sort nitrogen‐doped ti<sub>3</sub>c<sub>2</sub> mxene: mechanism investigation and electrochemical analysis
topic Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.202000852
publishDate 2020
physical
description <jats:title>Abstract</jats:title><jats:p>Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for –OH), and surface absorption (on –O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.</jats:p>
container_issue 47
container_start_page 0
container_title Advanced Functional Materials
container_volume 30
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792348362375168003
geogr_code not assigned
last_indexed 2024-03-01T18:09:58.12Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Nitrogen%E2%80%90Doped+Ti3C2+MXene%3A+Mechanism+Investigation+and+Electrochemical+Analysis&rft.date=2020-11-01&genre=article&issn=1616-3028&volume=30&issue=47&jtitle=Advanced+Functional+Materials&atitle=Nitrogen%E2%80%90Doped+Ti%3Csub%3E3%3C%2Fsub%3EC%3Csub%3E2%3C%2Fsub%3E+MXene%3A+Mechanism+Investigation+and+Electrochemical+Analysis&aulast=Sun&aufirst=ZhengMing&rft_id=info%3Adoi%2F10.1002%2Fadfm.202000852&rft.language%5B0%5D=eng
SOLR
_version_ 1792348362375168003
author Lu, Chengjie, Yang, Li, Yan, Bingzhen, Sun, Liangbo, Zhang, Peigen, Zhang, Wei, Sun, ZhengMing
author_facet Lu, Chengjie, Yang, Li, Yan, Bingzhen, Sun, Liangbo, Zhang, Peigen, Zhang, Wei, Sun, ZhengMing, Lu, Chengjie, Yang, Li, Yan, Bingzhen, Sun, Liangbo, Zhang, Peigen, Zhang, Wei, Sun, ZhengMing
author_sort lu, chengjie
container_issue 47
container_start_page 0
container_title Advanced Functional Materials
container_volume 30
description <jats:title>Abstract</jats:title><jats:p>Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for –OH), and surface absorption (on –O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.</jats:p>
doi_str_mv 10.1002/adfm.202000852
facet_avail Online
finc_class_facet Physik, Chemie und Pharmazie, Biologie, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMjAwMDg1Mg
imprint Wiley, 2020
imprint_str_mv Wiley, 2020
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1616-301X, 1616-3028
issn_str_mv 1616-301X, 1616-3028
language English
last_indexed 2024-03-01T18:09:58.12Z
match_str lu2020nitrogendopedti3c2mxenemechanisminvestigationandelectrochemicalanalysis
mega_collection Wiley (CrossRef)
physical
publishDate 2020
publishDateSort 2020
publisher Wiley
record_format ai
recordtype ai
series Advanced Functional Materials
source_id 49
spelling Lu, Chengjie Yang, Li Yan, Bingzhen Sun, Liangbo Zhang, Peigen Zhang, Wei Sun, ZhengMing 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.202000852 <jats:title>Abstract</jats:title><jats:p>Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for –OH), and surface absorption (on –O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub> MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.</jats:p> Nitrogen‐Doped Ti<sub>3</sub>C<sub>2</sub> MXene: Mechanism Investigation and Electrochemical Analysis Advanced Functional Materials
spellingShingle Lu, Chengjie, Yang, Li, Yan, Bingzhen, Sun, Liangbo, Zhang, Peigen, Zhang, Wei, Sun, ZhengMing, Advanced Functional Materials, Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis, Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
title Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_full Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_fullStr Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_full_unstemmed Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_short Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
title_sort nitrogen‐doped ti<sub>3</sub>c<sub>2</sub> mxene: mechanism investigation and electrochemical analysis
title_unstemmed Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
topic Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.202000852