author_facet Hutchens, Shelby B.
Hall, Lee J.
Greer, Julia R.
Hutchens, Shelby B.
Hall, Lee J.
Greer, Julia R.
author Hutchens, Shelby B.
Hall, Lee J.
Greer, Julia R.
spellingShingle Hutchens, Shelby B.
Hall, Lee J.
Greer, Julia R.
Advanced Functional Materials
In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
author_sort hutchens, shelby b.
spelling Hutchens, Shelby B. Hall, Lee J. Greer, Julia R. 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.201000305 <jats:title>Abstract</jats:title><jats:p>Uniaxial compression studies are performed on 50‐µm‐diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom‐to‐top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation.</jats:p> In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles Advanced Functional Materials
doi_str_mv 10.1002/adfm.201000305
facet_avail Online
finc_class_facet Chemie und Pharmazie
Biologie
Technik
Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTAwMDMwNQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTAwMDMwNQ
institution DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
imprint Wiley, 2010
imprint_str_mv Wiley, 2010
issn 1616-301X
1616-3028
issn_str_mv 1616-301X
1616-3028
language English
mega_collection Wiley (CrossRef)
match_str hutchens2010insitumechanicaltestingrevealsperiodicbucklenucleationandpropagationincarbonnanotubebundles
publishDateSort 2010
publisher Wiley
recordtype ai
record_format ai
series Advanced Functional Materials
source_id 49
title In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_unstemmed In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_full In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_fullStr In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_full_unstemmed In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_short In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_sort in situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles
topic Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.201000305
publishDate 2010
physical 2338-2346
description <jats:title>Abstract</jats:title><jats:p>Uniaxial compression studies are performed on 50‐µm‐diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom‐to‐top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation.</jats:p>
container_issue 14
container_start_page 2338
container_title Advanced Functional Materials
container_volume 20
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346205722771456
geogr_code not assigned
last_indexed 2024-03-01T17:35:41.796Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=In+situ+Mechanical+Testing+Reveals+Periodic+Buckle+Nucleation+and+Propagation+in+Carbon+Nanotube+Bundles&rft.date=2010-07-23&genre=article&issn=1616-3028&volume=20&issue=14&spage=2338&epage=2346&pages=2338-2346&jtitle=Advanced+Functional+Materials&atitle=In+situ+Mechanical+Testing+Reveals+Periodic+Buckle+Nucleation+and+Propagation+in+Carbon+Nanotube+Bundles&aulast=Greer&aufirst=Julia+R.&rft_id=info%3Adoi%2F10.1002%2Fadfm.201000305&rft.language%5B0%5D=eng
SOLR
_version_ 1792346205722771456
author Hutchens, Shelby B., Hall, Lee J., Greer, Julia R.
author_facet Hutchens, Shelby B., Hall, Lee J., Greer, Julia R., Hutchens, Shelby B., Hall, Lee J., Greer, Julia R.
author_sort hutchens, shelby b.
container_issue 14
container_start_page 2338
container_title Advanced Functional Materials
container_volume 20
description <jats:title>Abstract</jats:title><jats:p>Uniaxial compression studies are performed on 50‐µm‐diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom‐to‐top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation.</jats:p>
doi_str_mv 10.1002/adfm.201000305
facet_avail Online
finc_class_facet Chemie und Pharmazie, Biologie, Technik, Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTAwMDMwNQ
imprint Wiley, 2010
imprint_str_mv Wiley, 2010
institution DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14
issn 1616-301X, 1616-3028
issn_str_mv 1616-301X, 1616-3028
language English
last_indexed 2024-03-01T17:35:41.796Z
match_str hutchens2010insitumechanicaltestingrevealsperiodicbucklenucleationandpropagationincarbonnanotubebundles
mega_collection Wiley (CrossRef)
physical 2338-2346
publishDate 2010
publishDateSort 2010
publisher Wiley
record_format ai
recordtype ai
series Advanced Functional Materials
source_id 49
spelling Hutchens, Shelby B. Hall, Lee J. Greer, Julia R. 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.201000305 <jats:title>Abstract</jats:title><jats:p>Uniaxial compression studies are performed on 50‐µm‐diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom‐to‐top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation.</jats:p> In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles Advanced Functional Materials
spellingShingle Hutchens, Shelby B., Hall, Lee J., Greer, Julia R., Advanced Functional Materials, In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles, Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
title In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_full In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_fullStr In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_full_unstemmed In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_short In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
title_sort in situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles
title_unstemmed In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
topic Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.201000305