author_facet Tian, Mingyuan
Reed, Jennifer L
Tian, Mingyuan
Reed, Jennifer L
author Tian, Mingyuan
Reed, Jennifer L
spellingShingle Tian, Mingyuan
Reed, Jennifer L
Bioinformatics
Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
Computational Mathematics
Computational Theory and Mathematics
Computer Science Applications
Molecular Biology
Biochemistry
Statistics and Probability
author_sort tian, mingyuan
spelling Tian, Mingyuan Reed, Jennifer L 1367-4803 1367-4811 Oxford University Press (OUP) Computational Mathematics Computational Theory and Mathematics Computer Science Applications Molecular Biology Biochemistry Statistics and Probability http://dx.doi.org/10.1093/bioinformatics/bty445 <jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>Transcriptomics and proteomics data have been integrated into constraint-based models to influence flux predictions. However, it has been reported recently for Escherichia coli and Saccharomyces cerevisiae, that model predictions from parsimonious flux balance analysis (pFBA), which does not use expression data, are as good or better than predictions from various algorithms that integrate transcriptomics or proteomics data into constraint-based models.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>In this paper, we describe a novel constraint-based method called Linear Bound Flux Balance Analysis (LBFBA), which uses expression data (either transcriptomic or proteomic) to predict metabolic fluxes. The method uses expression data to place soft constraints on individual fluxes, which can be violated. Parameters in the soft constraints are first estimated from a training expression and flux dataset before being used to predict fluxes from expression data in other conditions. We applied LBFBA to E.coli and S.cerevisiae datasets and found that LBFBA predictions were more accurate than pFBA predictions, with average normalized errors roughly half of those from pFBA. For the first time, we demonstrate a computational method that integrates expression data into constraint-based models and improves quantitative flux predictions over pFBA.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>Code is available in the Supplementary data available at Bioinformatics online.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec> Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis Bioinformatics
doi_str_mv 10.1093/bioinformatics/bty445
facet_avail Online
Free
finc_class_facet Mathematik
Informatik
Biologie
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5My9iaW9pbmZvcm1hdGljcy9idHk0NDU
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5My9iaW9pbmZvcm1hdGljcy9idHk0NDU
institution DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
imprint Oxford University Press (OUP), 2018
imprint_str_mv Oxford University Press (OUP), 2018
issn 1367-4803
1367-4811
issn_str_mv 1367-4803
1367-4811
language English
mega_collection Oxford University Press (OUP) (CrossRef)
match_str tian2018integratingproteomicortranscriptomicdataintometabolicmodelsusinglinearboundfluxbalanceanalysis
publishDateSort 2018
publisher Oxford University Press (OUP)
recordtype ai
record_format ai
series Bioinformatics
source_id 49
title Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_unstemmed Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_full Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_fullStr Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_full_unstemmed Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_short Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_sort integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
topic Computational Mathematics
Computational Theory and Mathematics
Computer Science Applications
Molecular Biology
Biochemistry
Statistics and Probability
url http://dx.doi.org/10.1093/bioinformatics/bty445
publishDate 2018
physical 3882-3888
description <jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>Transcriptomics and proteomics data have been integrated into constraint-based models to influence flux predictions. However, it has been reported recently for Escherichia coli and Saccharomyces cerevisiae, that model predictions from parsimonious flux balance analysis (pFBA), which does not use expression data, are as good or better than predictions from various algorithms that integrate transcriptomics or proteomics data into constraint-based models.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>In this paper, we describe a novel constraint-based method called Linear Bound Flux Balance Analysis (LBFBA), which uses expression data (either transcriptomic or proteomic) to predict metabolic fluxes. The method uses expression data to place soft constraints on individual fluxes, which can be violated. Parameters in the soft constraints are first estimated from a training expression and flux dataset before being used to predict fluxes from expression data in other conditions. We applied LBFBA to E.coli and S.cerevisiae datasets and found that LBFBA predictions were more accurate than pFBA predictions, with average normalized errors roughly half of those from pFBA. For the first time, we demonstrate a computational method that integrates expression data into constraint-based models and improves quantitative flux predictions over pFBA.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>Code is available in the Supplementary data available at Bioinformatics online.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec>
container_issue 22
container_start_page 3882
container_title Bioinformatics
container_volume 34
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343359853953024
geogr_code not assigned
last_indexed 2024-03-01T16:49:51.06Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Integrating+proteomic+or+transcriptomic+data+into+metabolic+models+using+linear+bound+flux+balance+analysis&rft.date=2018-11-15&genre=article&issn=1367-4811&volume=34&issue=22&spage=3882&epage=3888&pages=3882-3888&jtitle=Bioinformatics&atitle=Integrating+proteomic+or+transcriptomic+data+into+metabolic+models+using+linear+bound+flux+balance+analysis&aulast=Reed&aufirst=Jennifer+L&rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2Fbty445&rft.language%5B0%5D=eng
SOLR
_version_ 1792343359853953024
author Tian, Mingyuan, Reed, Jennifer L
author_facet Tian, Mingyuan, Reed, Jennifer L, Tian, Mingyuan, Reed, Jennifer L
author_sort tian, mingyuan
container_issue 22
container_start_page 3882
container_title Bioinformatics
container_volume 34
description <jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>Transcriptomics and proteomics data have been integrated into constraint-based models to influence flux predictions. However, it has been reported recently for Escherichia coli and Saccharomyces cerevisiae, that model predictions from parsimonious flux balance analysis (pFBA), which does not use expression data, are as good or better than predictions from various algorithms that integrate transcriptomics or proteomics data into constraint-based models.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>In this paper, we describe a novel constraint-based method called Linear Bound Flux Balance Analysis (LBFBA), which uses expression data (either transcriptomic or proteomic) to predict metabolic fluxes. The method uses expression data to place soft constraints on individual fluxes, which can be violated. Parameters in the soft constraints are first estimated from a training expression and flux dataset before being used to predict fluxes from expression data in other conditions. We applied LBFBA to E.coli and S.cerevisiae datasets and found that LBFBA predictions were more accurate than pFBA predictions, with average normalized errors roughly half of those from pFBA. For the first time, we demonstrate a computational method that integrates expression data into constraint-based models and improves quantitative flux predictions over pFBA.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>Code is available in the Supplementary data available at Bioinformatics online.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec>
doi_str_mv 10.1093/bioinformatics/bty445
facet_avail Online, Free
finc_class_facet Mathematik, Informatik, Biologie, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5My9iaW9pbmZvcm1hdGljcy9idHk0NDU
imprint Oxford University Press (OUP), 2018
imprint_str_mv Oxford University Press (OUP), 2018
institution DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15
issn 1367-4803, 1367-4811
issn_str_mv 1367-4803, 1367-4811
language English
last_indexed 2024-03-01T16:49:51.06Z
match_str tian2018integratingproteomicortranscriptomicdataintometabolicmodelsusinglinearboundfluxbalanceanalysis
mega_collection Oxford University Press (OUP) (CrossRef)
physical 3882-3888
publishDate 2018
publishDateSort 2018
publisher Oxford University Press (OUP)
record_format ai
recordtype ai
series Bioinformatics
source_id 49
spelling Tian, Mingyuan Reed, Jennifer L 1367-4803 1367-4811 Oxford University Press (OUP) Computational Mathematics Computational Theory and Mathematics Computer Science Applications Molecular Biology Biochemistry Statistics and Probability http://dx.doi.org/10.1093/bioinformatics/bty445 <jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>Transcriptomics and proteomics data have been integrated into constraint-based models to influence flux predictions. However, it has been reported recently for Escherichia coli and Saccharomyces cerevisiae, that model predictions from parsimonious flux balance analysis (pFBA), which does not use expression data, are as good or better than predictions from various algorithms that integrate transcriptomics or proteomics data into constraint-based models.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>In this paper, we describe a novel constraint-based method called Linear Bound Flux Balance Analysis (LBFBA), which uses expression data (either transcriptomic or proteomic) to predict metabolic fluxes. The method uses expression data to place soft constraints on individual fluxes, which can be violated. Parameters in the soft constraints are first estimated from a training expression and flux dataset before being used to predict fluxes from expression data in other conditions. We applied LBFBA to E.coli and S.cerevisiae datasets and found that LBFBA predictions were more accurate than pFBA predictions, with average normalized errors roughly half of those from pFBA. For the first time, we demonstrate a computational method that integrates expression data into constraint-based models and improves quantitative flux predictions over pFBA.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>Code is available in the Supplementary data available at Bioinformatics online.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec> Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis Bioinformatics
spellingShingle Tian, Mingyuan, Reed, Jennifer L, Bioinformatics, Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis, Computational Mathematics, Computational Theory and Mathematics, Computer Science Applications, Molecular Biology, Biochemistry, Statistics and Probability
title Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_full Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_fullStr Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_full_unstemmed Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_short Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_sort integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
title_unstemmed Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
topic Computational Mathematics, Computational Theory and Mathematics, Computer Science Applications, Molecular Biology, Biochemistry, Statistics and Probability
url http://dx.doi.org/10.1093/bioinformatics/bty445