author_facet Seidel, Julian
Schmitt, Georg
Hoffmann, Maren
Jendrossek, Dieter
Einsle, Oliver
Seidel, Julian
Schmitt, Georg
Hoffmann, Maren
Jendrossek, Dieter
Einsle, Oliver
author Seidel, Julian
Schmitt, Georg
Hoffmann, Maren
Jendrossek, Dieter
Einsle, Oliver
spellingShingle Seidel, Julian
Schmitt, Georg
Hoffmann, Maren
Jendrossek, Dieter
Einsle, Oliver
Proceedings of the National Academy of Sciences
Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
Multidisciplinary
author_sort seidel, julian
spelling Seidel, Julian Schmitt, Georg Hoffmann, Maren Jendrossek, Dieter Einsle, Oliver 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1305560110 <jats:p> Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from <jats:italic>Xanthomonas</jats:italic> sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme <jats:italic>c</jats:italic> -type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O <jats:sub>2</jats:sub> stably bound to the active site heme iron. Activation and cleavage of O <jats:sub>2</jats:sub> require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage. </jats:p> Structure of the processive rubber oxygenase RoxA from <i>Xanthomonas</i> sp Proceedings of the National Academy of Sciences
doi_str_mv 10.1073/pnas.1305560110
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjEzMDU1NjAxMTA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjEzMDU1NjAxMTA
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Proceedings of the National Academy of Sciences, 2013
imprint_str_mv Proceedings of the National Academy of Sciences, 2013
issn 0027-8424
1091-6490
issn_str_mv 0027-8424
1091-6490
language English
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
match_str seidel2013structureoftheprocessiverubberoxygenaseroxafromxanthomonassp
publishDateSort 2013
publisher Proceedings of the National Academy of Sciences
recordtype ai
record_format ai
series Proceedings of the National Academy of Sciences
source_id 49
title Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_unstemmed Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_full Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_fullStr Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_full_unstemmed Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_short Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_sort structure of the processive rubber oxygenase roxa from <i>xanthomonas</i> sp
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1305560110
publishDate 2013
physical 13833-13838
description <jats:p> Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from <jats:italic>Xanthomonas</jats:italic> sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme <jats:italic>c</jats:italic> -type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O <jats:sub>2</jats:sub> stably bound to the active site heme iron. Activation and cleavage of O <jats:sub>2</jats:sub> require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage. </jats:p>
container_issue 34
container_start_page 13833
container_title Proceedings of the National Academy of Sciences
container_volume 110
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792348117775941632
geogr_code not assigned
last_indexed 2024-03-01T18:06:05.226Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Structure+of+the+processive+rubber+oxygenase+RoxA+from++++++++++++Xanthomonas++++++++++++sp&rft.date=2013-08-20&genre=article&issn=1091-6490&volume=110&issue=34&spage=13833&epage=13838&pages=13833-13838&jtitle=Proceedings+of+the+National+Academy+of+Sciences&atitle=Structure+of+the+processive+rubber+oxygenase+RoxA+from%0A++++++++++++%3Ci%3EXanthomonas%3C%2Fi%3E%0A++++++++++++sp&aulast=Einsle&aufirst=Oliver&rft_id=info%3Adoi%2F10.1073%2Fpnas.1305560110&rft.language%5B0%5D=eng
SOLR
_version_ 1792348117775941632
author Seidel, Julian, Schmitt, Georg, Hoffmann, Maren, Jendrossek, Dieter, Einsle, Oliver
author_facet Seidel, Julian, Schmitt, Georg, Hoffmann, Maren, Jendrossek, Dieter, Einsle, Oliver, Seidel, Julian, Schmitt, Georg, Hoffmann, Maren, Jendrossek, Dieter, Einsle, Oliver
author_sort seidel, julian
container_issue 34
container_start_page 13833
container_title Proceedings of the National Academy of Sciences
container_volume 110
description <jats:p> Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from <jats:italic>Xanthomonas</jats:italic> sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme <jats:italic>c</jats:italic> -type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O <jats:sub>2</jats:sub> stably bound to the active site heme iron. Activation and cleavage of O <jats:sub>2</jats:sub> require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage. </jats:p>
doi_str_mv 10.1073/pnas.1305560110
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjEzMDU1NjAxMTA
imprint Proceedings of the National Academy of Sciences, 2013
imprint_str_mv Proceedings of the National Academy of Sciences, 2013
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0027-8424, 1091-6490
issn_str_mv 0027-8424, 1091-6490
language English
last_indexed 2024-03-01T18:06:05.226Z
match_str seidel2013structureoftheprocessiverubberoxygenaseroxafromxanthomonassp
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
physical 13833-13838
publishDate 2013
publishDateSort 2013
publisher Proceedings of the National Academy of Sciences
record_format ai
recordtype ai
series Proceedings of the National Academy of Sciences
source_id 49
spelling Seidel, Julian Schmitt, Georg Hoffmann, Maren Jendrossek, Dieter Einsle, Oliver 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1305560110 <jats:p> Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from <jats:italic>Xanthomonas</jats:italic> sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme <jats:italic>c</jats:italic> -type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O <jats:sub>2</jats:sub> stably bound to the active site heme iron. Activation and cleavage of O <jats:sub>2</jats:sub> require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage. </jats:p> Structure of the processive rubber oxygenase RoxA from <i>Xanthomonas</i> sp Proceedings of the National Academy of Sciences
spellingShingle Seidel, Julian, Schmitt, Georg, Hoffmann, Maren, Jendrossek, Dieter, Einsle, Oliver, Proceedings of the National Academy of Sciences, Structure of the processive rubber oxygenase RoxA from Xanthomonas sp, Multidisciplinary
title Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_full Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_fullStr Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_full_unstemmed Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_short Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
title_sort structure of the processive rubber oxygenase roxa from <i>xanthomonas</i> sp
title_unstemmed Structure of the processive rubber oxygenase RoxA from Xanthomonas sp
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1305560110