author_facet Park, Sang Tae
van der Veen, Renske M.
Park, Sang Tae
van der Veen, Renske M.
author Park, Sang Tae
van der Veen, Renske M.
spellingShingle Park, Sang Tae
van der Veen, Renske M.
Structural Dynamics
Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
Spectroscopy
Condensed Matter Physics
Instrumentation
Radiation
author_sort park, sang tae
spelling Park, Sang Tae van der Veen, Renske M. 2329-7778 AIP Publishing Spectroscopy Condensed Matter Physics Instrumentation Radiation http://dx.doi.org/10.1063/1.4985058 <jats:p>In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics.</jats:p> Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover Structural Dynamics
doi_str_mv 10.1063/1.4985058
facet_avail Online
Free
finc_class_facet Physik
Allgemeines
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ5ODUwNTg
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ5ODUwNTg
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint AIP Publishing, 2017
imprint_str_mv AIP Publishing, 2017
issn 2329-7778
issn_str_mv 2329-7778
language English
mega_collection AIP Publishing (CrossRef)
match_str park2017modelingnonequilibriumdynamicsofphasetransitionsatthenanoscaleapplicationtospincrossover
publishDateSort 2017
publisher AIP Publishing
recordtype ai
record_format ai
series Structural Dynamics
source_id 49
title Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_unstemmed Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_full Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_fullStr Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_full_unstemmed Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_short Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_sort modeling nonequilibrium dynamics of phase transitions at the nanoscale: application to spin-crossover
topic Spectroscopy
Condensed Matter Physics
Instrumentation
Radiation
url http://dx.doi.org/10.1063/1.4985058
publishDate 2017
physical
description <jats:p>In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics.</jats:p>
container_issue 4
container_start_page 0
container_title Structural Dynamics
container_volume 4
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792334839770251272
geogr_code not assigned
last_indexed 2024-03-01T14:35:02.422Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Modeling+nonequilibrium+dynamics+of+phase+transitions+at+the+nanoscale%3A+Application+to+spin-crossover&rft.date=2017-07-01&genre=article&issn=2329-7778&volume=4&issue=4&jtitle=Structural+Dynamics&atitle=Modeling+nonequilibrium+dynamics+of+phase+transitions+at+the+nanoscale%3A+Application+to+spin-crossover&aulast=van+der+Veen&aufirst=Renske+M.&rft_id=info%3Adoi%2F10.1063%2F1.4985058&rft.language%5B0%5D=eng
SOLR
_version_ 1792334839770251272
author Park, Sang Tae, van der Veen, Renske M.
author_facet Park, Sang Tae, van der Veen, Renske M., Park, Sang Tae, van der Veen, Renske M.
author_sort park, sang tae
container_issue 4
container_start_page 0
container_title Structural Dynamics
container_volume 4
description <jats:p>In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics.</jats:p>
doi_str_mv 10.1063/1.4985058
facet_avail Online, Free
finc_class_facet Physik, Allgemeines, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ5ODUwNTg
imprint AIP Publishing, 2017
imprint_str_mv AIP Publishing, 2017
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 2329-7778
issn_str_mv 2329-7778
language English
last_indexed 2024-03-01T14:35:02.422Z
match_str park2017modelingnonequilibriumdynamicsofphasetransitionsatthenanoscaleapplicationtospincrossover
mega_collection AIP Publishing (CrossRef)
physical
publishDate 2017
publishDateSort 2017
publisher AIP Publishing
record_format ai
recordtype ai
series Structural Dynamics
source_id 49
spelling Park, Sang Tae van der Veen, Renske M. 2329-7778 AIP Publishing Spectroscopy Condensed Matter Physics Instrumentation Radiation http://dx.doi.org/10.1063/1.4985058 <jats:p>In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics.</jats:p> Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover Structural Dynamics
spellingShingle Park, Sang Tae, van der Veen, Renske M., Structural Dynamics, Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover, Spectroscopy, Condensed Matter Physics, Instrumentation, Radiation
title Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_full Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_fullStr Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_full_unstemmed Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_short Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
title_sort modeling nonequilibrium dynamics of phase transitions at the nanoscale: application to spin-crossover
title_unstemmed Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover
topic Spectroscopy, Condensed Matter Physics, Instrumentation, Radiation
url http://dx.doi.org/10.1063/1.4985058