author_facet van Kan, Jeroen A.
Zhang, Ce
Perumal Malar, Piravi
van der Maarel, Johan R. C.
van Kan, Jeroen A.
Zhang, Ce
Perumal Malar, Piravi
van der Maarel, Johan R. C.
author van Kan, Jeroen A.
Zhang, Ce
Perumal Malar, Piravi
van der Maarel, Johan R. C.
spellingShingle van Kan, Jeroen A.
Zhang, Ce
Perumal Malar, Piravi
van der Maarel, Johan R. C.
Biomicrofluidics
High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
Condensed Matter Physics
General Materials Science
Fluid Flow and Transfer Processes
Colloid and Surface Chemistry
Biomedical Engineering
author_sort van kan, jeroen a.
spelling van Kan, Jeroen A. Zhang, Ce Perumal Malar, Piravi van der Maarel, Johan R. C. 1932-1058 AIP Publishing Condensed Matter Physics General Materials Science Fluid Flow and Transfer Processes Colloid and Surface Chemistry Biomedical Engineering http://dx.doi.org/10.1063/1.4740231 <jats:p>An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.</jats:p> High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies Biomicrofluidics
doi_str_mv 10.1063/1.4740231
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Technik
Physik
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ3NDAyMzE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ3NDAyMzE
institution DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
imprint AIP Publishing, 2012
imprint_str_mv AIP Publishing, 2012
issn 1932-1058
issn_str_mv 1932-1058
language English
mega_collection AIP Publishing (CrossRef)
match_str vankan2012highthroughputfabricationofdisposablenanofluidiclabonchipdevicesforsinglemoleculestudies
publishDateSort 2012
publisher AIP Publishing
recordtype ai
record_format ai
series Biomicrofluidics
source_id 49
title High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_unstemmed High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_full High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_fullStr High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_full_unstemmed High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_short High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_sort high throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
topic Condensed Matter Physics
General Materials Science
Fluid Flow and Transfer Processes
Colloid and Surface Chemistry
Biomedical Engineering
url http://dx.doi.org/10.1063/1.4740231
publishDate 2012
physical
description <jats:p>An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.</jats:p>
container_issue 3
container_start_page 0
container_title Biomicrofluidics
container_volume 6
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792333297371578377
geogr_code not assigned
last_indexed 2024-03-01T14:10:30.601Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=High+throughput+fabrication+of+disposable+nanofluidic+lab-on-chip+devices+for+single+molecule+studies&rft.date=2012-09-01&genre=article&issn=1932-1058&volume=6&issue=3&jtitle=Biomicrofluidics&atitle=High+throughput+fabrication+of+disposable+nanofluidic+lab-on-chip+devices+for+single+molecule+studies&aulast=van+der+Maarel&aufirst=Johan+R.+C.&rft_id=info%3Adoi%2F10.1063%2F1.4740231&rft.language%5B0%5D=eng
SOLR
_version_ 1792333297371578377
author van Kan, Jeroen A., Zhang, Ce, Perumal Malar, Piravi, van der Maarel, Johan R. C.
author_facet van Kan, Jeroen A., Zhang, Ce, Perumal Malar, Piravi, van der Maarel, Johan R. C., van Kan, Jeroen A., Zhang, Ce, Perumal Malar, Piravi, van der Maarel, Johan R. C.
author_sort van kan, jeroen a.
container_issue 3
container_start_page 0
container_title Biomicrofluidics
container_volume 6
description <jats:p>An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.</jats:p>
doi_str_mv 10.1063/1.4740231
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Technik, Physik, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjQ3NDAyMzE
imprint AIP Publishing, 2012
imprint_str_mv AIP Publishing, 2012
institution DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275
issn 1932-1058
issn_str_mv 1932-1058
language English
last_indexed 2024-03-01T14:10:30.601Z
match_str vankan2012highthroughputfabricationofdisposablenanofluidiclabonchipdevicesforsinglemoleculestudies
mega_collection AIP Publishing (CrossRef)
physical
publishDate 2012
publishDateSort 2012
publisher AIP Publishing
record_format ai
recordtype ai
series Biomicrofluidics
source_id 49
spelling van Kan, Jeroen A. Zhang, Ce Perumal Malar, Piravi van der Maarel, Johan R. C. 1932-1058 AIP Publishing Condensed Matter Physics General Materials Science Fluid Flow and Transfer Processes Colloid and Surface Chemistry Biomedical Engineering http://dx.doi.org/10.1063/1.4740231 <jats:p>An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.</jats:p> High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies Biomicrofluidics
spellingShingle van Kan, Jeroen A., Zhang, Ce, Perumal Malar, Piravi, van der Maarel, Johan R. C., Biomicrofluidics, High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies, Condensed Matter Physics, General Materials Science, Fluid Flow and Transfer Processes, Colloid and Surface Chemistry, Biomedical Engineering
title High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_full High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_fullStr High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_full_unstemmed High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_short High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_sort high throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
title_unstemmed High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies
topic Condensed Matter Physics, General Materials Science, Fluid Flow and Transfer Processes, Colloid and Surface Chemistry, Biomedical Engineering
url http://dx.doi.org/10.1063/1.4740231