author_facet Guazzotto, L.
Betti, R.
Guazzotto, L.
Betti, R.
author Guazzotto, L.
Betti, R.
spellingShingle Guazzotto, L.
Betti, R.
Physics of Plasmas
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
Condensed Matter Physics
author_sort guazzotto, l.
spelling Guazzotto, L. Betti, R. 1070-664X 1089-7674 AIP Publishing Condensed Matter Physics http://dx.doi.org/10.1063/1.3640809 <jats:p>Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.</jats:p> Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal Physics of Plasmas
doi_str_mv 10.1063/1.3640809
facet_avail Online
finc_class_facet Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjM2NDA4MDk
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjM2NDA4MDk
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
imprint AIP Publishing, 2011
imprint_str_mv AIP Publishing, 2011
issn 1070-664X
1089-7674
issn_str_mv 1070-664X
1089-7674
language English
mega_collection AIP Publishing (CrossRef)
match_str guazzotto2011twodimensionalmagnetohydrodynamicsimulationsofpoloidalflowsintokamaksandmhdpedestal
publishDateSort 2011
publisher AIP Publishing
recordtype ai
record_format ai
series Physics of Plasmas
source_id 49
title Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_unstemmed Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_full Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_fullStr Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_full_unstemmed Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_short Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_sort two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and mhd pedestal
topic Condensed Matter Physics
url http://dx.doi.org/10.1063/1.3640809
publishDate 2011
physical
description <jats:p>Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.</jats:p>
container_issue 9
container_start_page 0
container_title Physics of Plasmas
container_volume 18
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792341823127027712
geogr_code not assigned
last_indexed 2024-03-01T16:25:32.878Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Two-dimensional+magnetohydrodynamic+simulations+of+poloidal+flows+in+tokamaks+and+MHD+pedestal&rft.date=2011-09-01&genre=article&issn=1089-7674&volume=18&issue=9&jtitle=Physics+of+Plasmas&atitle=Two-dimensional+magnetohydrodynamic+simulations+of+poloidal+flows+in+tokamaks+and+MHD+pedestal&aulast=Betti&aufirst=R.&rft_id=info%3Adoi%2F10.1063%2F1.3640809&rft.language%5B0%5D=eng
SOLR
_version_ 1792341823127027712
author Guazzotto, L., Betti, R.
author_facet Guazzotto, L., Betti, R., Guazzotto, L., Betti, R.
author_sort guazzotto, l.
container_issue 9
container_start_page 0
container_title Physics of Plasmas
container_volume 18
description <jats:p>Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.</jats:p>
doi_str_mv 10.1063/1.3640809
facet_avail Online
finc_class_facet Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA2My8xLjM2NDA4MDk
imprint AIP Publishing, 2011
imprint_str_mv AIP Publishing, 2011
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229
issn 1070-664X, 1089-7674
issn_str_mv 1070-664X, 1089-7674
language English
last_indexed 2024-03-01T16:25:32.878Z
match_str guazzotto2011twodimensionalmagnetohydrodynamicsimulationsofpoloidalflowsintokamaksandmhdpedestal
mega_collection AIP Publishing (CrossRef)
physical
publishDate 2011
publishDateSort 2011
publisher AIP Publishing
record_format ai
recordtype ai
series Physics of Plasmas
source_id 49
spelling Guazzotto, L. Betti, R. 1070-664X 1089-7674 AIP Publishing Condensed Matter Physics http://dx.doi.org/10.1063/1.3640809 <jats:p>Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.</jats:p> Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal Physics of Plasmas
spellingShingle Guazzotto, L., Betti, R., Physics of Plasmas, Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal, Condensed Matter Physics
title Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_full Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_fullStr Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_full_unstemmed Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_short Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
title_sort two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and mhd pedestal
title_unstemmed Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
topic Condensed Matter Physics
url http://dx.doi.org/10.1063/1.3640809