author_facet Inceoglu, F.
Simoniello, R.
Arlt, R.
Rempel, M.
Inceoglu, F.
Simoniello, R.
Arlt, R.
Rempel, M.
author Inceoglu, F.
Simoniello, R.
Arlt, R.
Rempel, M.
spellingShingle Inceoglu, F.
Simoniello, R.
Arlt, R.
Rempel, M.
Astronomy & Astrophysics
Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
Space and Planetary Science
Astronomy and Astrophysics
author_sort inceoglu, f.
spelling Inceoglu, F. Simoniello, R. Arlt, R. Rempel, M. 0004-6361 1432-0746 EDP Sciences Space and Planetary Science Astronomy and Astrophysics http://dx.doi.org/10.1051/0004-6361/201935272 <jats:p><jats:italic>Context</jats:italic>. Solar magnetic activity exhibits variations with periods between 1.5 and 4 years, the so-called quasi-biennial oscillations (QBOs), in addition to the well-known 11-year Schwabe cycles. Solar dynamo is thought to be the mechanism responsible for the generation of QBOs.</jats:p> <jats:p><jats:italic>Aims</jats:italic>. In this work, we analyse sunspot areas to investigate the spatial and temporal behaviour of the QBO signal and study the physical mechanisms responsible using simulations from fully non-linear mean-field flux-transport dynamos.</jats:p> <jats:p><jats:italic>Methods</jats:italic>. We investigated the behaviour of the QBOs in the sunspot area data for the full disk, and the northern and southern hemispheres, using wavelet and Fourier analyses. We also ran solar dynamos with two different approaches to generating a poloidal field from an existing toroidal field, namely Babcock–Leighton and turbulent <jats:italic>α</jats:italic> mechanisms. We then studied the simulated magnetic field strengths as well as meridional circulation and differential rotation rates using the same methods.</jats:p> <jats:p><jats:italic>Results</jats:italic>. The results from the sunspot areas show that the QBOs are present in the full disk and hemispheric sunspot areas. These QBOs show slightly different spatial and temporal behaviours, indicating slightly decoupled solar hemispheres. The QBO signal is generally intermittent and in-phase with the sunspot area data, surfacing when the solar activity is at its maximum. The results from the BL-dynamos show that they are neither capable of generating the slightly decoupled behaviour of solar hemispheres nor can they generate QBO-like signals. The turbulent <jats:italic>α</jats:italic>-dynamos on the other hand generated decoupled hemispheres and some QBO-like shorter cycles.</jats:p> <jats:p><jats:italic>Conclusions</jats:italic>. In conclusion, our simulations show that the turbulent <jats:italic>α</jats:italic>-dynamos with the Lorentz force seem more efficient in generating the observed temporal and spatial behaviour of the QBO signal compared with the BL-dynamos.</jats:p> Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data Astronomy & Astrophysics
doi_str_mv 10.1051/0004-6361/201935272
facet_avail Online
Free
finc_class_facet Physik
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxOTM1Mjcy
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxOTM1Mjcy
institution DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
imprint EDP Sciences, 2019
imprint_str_mv EDP Sciences, 2019
issn 0004-6361
1432-0746
issn_str_mv 0004-6361
1432-0746
language Undetermined
mega_collection EDP Sciences (CrossRef)
match_str inceoglu2019constrainingnonlineardynamomodelsusingquasibiennialoscillationsfromsunspotareadata
publishDateSort 2019
publisher EDP Sciences
recordtype ai
record_format ai
series Astronomy & Astrophysics
source_id 49
title Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_unstemmed Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_full Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_fullStr Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_full_unstemmed Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_short Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_sort constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
topic Space and Planetary Science
Astronomy and Astrophysics
url http://dx.doi.org/10.1051/0004-6361/201935272
publishDate 2019
physical A117
description <jats:p><jats:italic>Context</jats:italic>. Solar magnetic activity exhibits variations with periods between 1.5 and 4 years, the so-called quasi-biennial oscillations (QBOs), in addition to the well-known 11-year Schwabe cycles. Solar dynamo is thought to be the mechanism responsible for the generation of QBOs.</jats:p> <jats:p><jats:italic>Aims</jats:italic>. In this work, we analyse sunspot areas to investigate the spatial and temporal behaviour of the QBO signal and study the physical mechanisms responsible using simulations from fully non-linear mean-field flux-transport dynamos.</jats:p> <jats:p><jats:italic>Methods</jats:italic>. We investigated the behaviour of the QBOs in the sunspot area data for the full disk, and the northern and southern hemispheres, using wavelet and Fourier analyses. We also ran solar dynamos with two different approaches to generating a poloidal field from an existing toroidal field, namely Babcock–Leighton and turbulent <jats:italic>α</jats:italic> mechanisms. We then studied the simulated magnetic field strengths as well as meridional circulation and differential rotation rates using the same methods.</jats:p> <jats:p><jats:italic>Results</jats:italic>. The results from the sunspot areas show that the QBOs are present in the full disk and hemispheric sunspot areas. These QBOs show slightly different spatial and temporal behaviours, indicating slightly decoupled solar hemispheres. The QBO signal is generally intermittent and in-phase with the sunspot area data, surfacing when the solar activity is at its maximum. The results from the BL-dynamos show that they are neither capable of generating the slightly decoupled behaviour of solar hemispheres nor can they generate QBO-like signals. The turbulent <jats:italic>α</jats:italic>-dynamos on the other hand generated decoupled hemispheres and some QBO-like shorter cycles.</jats:p> <jats:p><jats:italic>Conclusions</jats:italic>. In conclusion, our simulations show that the turbulent <jats:italic>α</jats:italic>-dynamos with the Lorentz force seem more efficient in generating the observed temporal and spatial behaviour of the QBO signal compared with the BL-dynamos.</jats:p>
container_start_page 0
container_title Astronomy & Astrophysics
container_volume 625
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343142207324167
geogr_code not assigned
last_indexed 2024-03-01T16:46:46.369Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Constraining+non-linear+dynamo+models+using+quasi-biennial+oscillations+from+sunspot+area+data&rft.date=2019-05-01&genre=article&issn=1432-0746&volume=625&pages=A117&jtitle=Astronomy+%26+Astrophysics&atitle=Constraining+non-linear+dynamo+models+using+quasi-biennial+oscillations+from+sunspot+area+data&aulast=Rempel&aufirst=M.&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201935272&rft.language%5B0%5D=und
SOLR
_version_ 1792343142207324167
author Inceoglu, F., Simoniello, R., Arlt, R., Rempel, M.
author_facet Inceoglu, F., Simoniello, R., Arlt, R., Rempel, M., Inceoglu, F., Simoniello, R., Arlt, R., Rempel, M.
author_sort inceoglu, f.
container_start_page 0
container_title Astronomy & Astrophysics
container_volume 625
description <jats:p><jats:italic>Context</jats:italic>. Solar magnetic activity exhibits variations with periods between 1.5 and 4 years, the so-called quasi-biennial oscillations (QBOs), in addition to the well-known 11-year Schwabe cycles. Solar dynamo is thought to be the mechanism responsible for the generation of QBOs.</jats:p> <jats:p><jats:italic>Aims</jats:italic>. In this work, we analyse sunspot areas to investigate the spatial and temporal behaviour of the QBO signal and study the physical mechanisms responsible using simulations from fully non-linear mean-field flux-transport dynamos.</jats:p> <jats:p><jats:italic>Methods</jats:italic>. We investigated the behaviour of the QBOs in the sunspot area data for the full disk, and the northern and southern hemispheres, using wavelet and Fourier analyses. We also ran solar dynamos with two different approaches to generating a poloidal field from an existing toroidal field, namely Babcock–Leighton and turbulent <jats:italic>α</jats:italic> mechanisms. We then studied the simulated magnetic field strengths as well as meridional circulation and differential rotation rates using the same methods.</jats:p> <jats:p><jats:italic>Results</jats:italic>. The results from the sunspot areas show that the QBOs are present in the full disk and hemispheric sunspot areas. These QBOs show slightly different spatial and temporal behaviours, indicating slightly decoupled solar hemispheres. The QBO signal is generally intermittent and in-phase with the sunspot area data, surfacing when the solar activity is at its maximum. The results from the BL-dynamos show that they are neither capable of generating the slightly decoupled behaviour of solar hemispheres nor can they generate QBO-like signals. The turbulent <jats:italic>α</jats:italic>-dynamos on the other hand generated decoupled hemispheres and some QBO-like shorter cycles.</jats:p> <jats:p><jats:italic>Conclusions</jats:italic>. In conclusion, our simulations show that the turbulent <jats:italic>α</jats:italic>-dynamos with the Lorentz force seem more efficient in generating the observed temporal and spatial behaviour of the QBO signal compared with the BL-dynamos.</jats:p>
doi_str_mv 10.1051/0004-6361/201935272
facet_avail Online, Free
finc_class_facet Physik, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxOTM1Mjcy
imprint EDP Sciences, 2019
imprint_str_mv EDP Sciences, 2019
institution DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15
issn 0004-6361, 1432-0746
issn_str_mv 0004-6361, 1432-0746
language Undetermined
last_indexed 2024-03-01T16:46:46.369Z
match_str inceoglu2019constrainingnonlineardynamomodelsusingquasibiennialoscillationsfromsunspotareadata
mega_collection EDP Sciences (CrossRef)
physical A117
publishDate 2019
publishDateSort 2019
publisher EDP Sciences
record_format ai
recordtype ai
series Astronomy & Astrophysics
source_id 49
spelling Inceoglu, F. Simoniello, R. Arlt, R. Rempel, M. 0004-6361 1432-0746 EDP Sciences Space and Planetary Science Astronomy and Astrophysics http://dx.doi.org/10.1051/0004-6361/201935272 <jats:p><jats:italic>Context</jats:italic>. Solar magnetic activity exhibits variations with periods between 1.5 and 4 years, the so-called quasi-biennial oscillations (QBOs), in addition to the well-known 11-year Schwabe cycles. Solar dynamo is thought to be the mechanism responsible for the generation of QBOs.</jats:p> <jats:p><jats:italic>Aims</jats:italic>. In this work, we analyse sunspot areas to investigate the spatial and temporal behaviour of the QBO signal and study the physical mechanisms responsible using simulations from fully non-linear mean-field flux-transport dynamos.</jats:p> <jats:p><jats:italic>Methods</jats:italic>. We investigated the behaviour of the QBOs in the sunspot area data for the full disk, and the northern and southern hemispheres, using wavelet and Fourier analyses. We also ran solar dynamos with two different approaches to generating a poloidal field from an existing toroidal field, namely Babcock–Leighton and turbulent <jats:italic>α</jats:italic> mechanisms. We then studied the simulated magnetic field strengths as well as meridional circulation and differential rotation rates using the same methods.</jats:p> <jats:p><jats:italic>Results</jats:italic>. The results from the sunspot areas show that the QBOs are present in the full disk and hemispheric sunspot areas. These QBOs show slightly different spatial and temporal behaviours, indicating slightly decoupled solar hemispheres. The QBO signal is generally intermittent and in-phase with the sunspot area data, surfacing when the solar activity is at its maximum. The results from the BL-dynamos show that they are neither capable of generating the slightly decoupled behaviour of solar hemispheres nor can they generate QBO-like signals. The turbulent <jats:italic>α</jats:italic>-dynamos on the other hand generated decoupled hemispheres and some QBO-like shorter cycles.</jats:p> <jats:p><jats:italic>Conclusions</jats:italic>. In conclusion, our simulations show that the turbulent <jats:italic>α</jats:italic>-dynamos with the Lorentz force seem more efficient in generating the observed temporal and spatial behaviour of the QBO signal compared with the BL-dynamos.</jats:p> Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data Astronomy & Astrophysics
spellingShingle Inceoglu, F., Simoniello, R., Arlt, R., Rempel, M., Astronomy & Astrophysics, Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data, Space and Planetary Science, Astronomy and Astrophysics
title Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_full Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_fullStr Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_full_unstemmed Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_short Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_sort constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
title_unstemmed Constraining non-linear dynamo models using quasi-biennial oscillations from sunspot area data
topic Space and Planetary Science, Astronomy and Astrophysics
url http://dx.doi.org/10.1051/0004-6361/201935272