Eintrag weiter verarbeiten

Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters: LI. Features in the cosmic microwav...

Gespeichert in:

Bibliographische Detailangaben
Zeitschriftentitel: Astronomy & Astrophysics
Personen und Körperschaften: Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J.-F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J.-L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A.-S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., Zonca, A.
In: Astronomy & Astrophysics, 607, 2017, S. A95
Format: E-Article
Sprache: Unbestimmt
veröffentlicht:
EDP Sciences
Schlagwörter:
author_facet Aghanim, N.
Akrami, Y.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Cardoso, J.-F.
Challinor, A.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Doré, O.
Ducout, A.
Dupac, X.
Dusini, S.
Efstathiou, G.
Elsner, F.
Enßlin, T. A.
Eriksen, H. K.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Génova-Santos, R. T.
Gerbino, M.
González-Nuevo, J.
Górski, K. M.
Gratton, S.
Gruppuso, A.
Gudmundsson, J. E.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihänen, E.
Keskitalo, R.
Kiiveri, K.
Kim, J.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J.-M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lewis, A.
Liguori, M.
Lilje, P. B.
Lilley, M.
Lindholm, V.
López-Caniego, M.
Lubin, P. M.
Ma, Y.-Z.
Macías-Pérez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martínez-González, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Mennella, A.
Migliaccio, M.
Millea, M.
Miville-Deschênes, M.-A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Narimani, A.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Pettorino, V.
Piacentini, F.
Polastri, L.
Polenta, G.
Puget, J.-L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubiño-Martín, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Stanco, L.
Suur-Uski, A.-S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
Aghanim, N.
Akrami, Y.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Cardoso, J.-F.
Challinor, A.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Doré, O.
Ducout, A.
Dupac, X.
Dusini, S.
Efstathiou, G.
Elsner, F.
Enßlin, T. A.
Eriksen, H. K.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Génova-Santos, R. T.
Gerbino, M.
González-Nuevo, J.
Górski, K. M.
Gratton, S.
Gruppuso, A.
Gudmundsson, J. E.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihänen, E.
Keskitalo, R.
Kiiveri, K.
Kim, J.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J.-M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lewis, A.
Liguori, M.
Lilje, P. B.
Lilley, M.
Lindholm, V.
López-Caniego, M.
Lubin, P. M.
Ma, Y.-Z.
Macías-Pérez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martínez-González, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Mennella, A.
Migliaccio, M.
Millea, M.
Miville-Deschênes, M.-A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Narimani, A.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Pettorino, V.
Piacentini, F.
Polastri, L.
Polenta, G.
Puget, J.-L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubiño-Martín, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Stanco, L.
Suur-Uski, A.-S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
author Aghanim, N.
Akrami, Y.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Cardoso, J.-F.
Challinor, A.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Doré, O.
Ducout, A.
Dupac, X.
Dusini, S.
Efstathiou, G.
Elsner, F.
Enßlin, T. A.
Eriksen, H. K.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Génova-Santos, R. T.
Gerbino, M.
González-Nuevo, J.
Górski, K. M.
Gratton, S.
Gruppuso, A.
Gudmundsson, J. E.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihänen, E.
Keskitalo, R.
Kiiveri, K.
Kim, J.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J.-M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lewis, A.
Liguori, M.
Lilje, P. B.
Lilley, M.
Lindholm, V.
López-Caniego, M.
Lubin, P. M.
Ma, Y.-Z.
Macías-Pérez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martínez-González, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Mennella, A.
Migliaccio, M.
Millea, M.
Miville-Deschênes, M.-A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Narimani, A.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Pettorino, V.
Piacentini, F.
Polastri, L.
Polenta, G.
Puget, J.-L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubiño-Martín, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Stanco, L.
Suur-Uski, A.-S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
spellingShingle Aghanim, N.
Akrami, Y.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Cardoso, J.-F.
Challinor, A.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Doré, O.
Ducout, A.
Dupac, X.
Dusini, S.
Efstathiou, G.
Elsner, F.
Enßlin, T. A.
Eriksen, H. K.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Génova-Santos, R. T.
Gerbino, M.
González-Nuevo, J.
Górski, K. M.
Gratton, S.
Gruppuso, A.
Gudmundsson, J. E.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihänen, E.
Keskitalo, R.
Kiiveri, K.
Kim, J.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J.-M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lewis, A.
Liguori, M.
Lilje, P. B.
Lilley, M.
Lindholm, V.
López-Caniego, M.
Lubin, P. M.
Ma, Y.-Z.
Macías-Pérez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martínez-González, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Mennella, A.
Migliaccio, M.
Millea, M.
Miville-Deschênes, M.-A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Narimani, A.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Pettorino, V.
Piacentini, F.
Polastri, L.
Polenta, G.
Puget, J.-L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubiño-Martín, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Stanco, L.
Suur-Uski, A.-S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
Astronomy & Astrophysics
Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
Space and Planetary Science
Astronomy and Astrophysics
author_sort aghanim, n.
spelling Aghanim, N. Akrami, Y. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J.-F. Challinor, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Doré, O. Ducout, A. Dupac, X. Dusini, S. Efstathiou, G. Elsner, F. Enßlin, T. A. Eriksen, H. K. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Génova-Santos, R. T. Gerbino, M. González-Nuevo, J. Górski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihänen, E. Keskitalo, R. Kiiveri, K. Kim, J. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J.-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lilley, M. Lindholm, V. López-Caniego, M. Lubin, P. M. Ma, Y.-Z. Macías-Pérez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martínez-González, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Mennella, A. Migliaccio, M. Millea, M. Miville-Deschênes, M.-A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Narimani, A. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Pettorino, V. Piacentini, F. Polastri, L. Polenta, G. Puget, J.-L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubiño-Martín, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Stanco, L. Suur-Uski, A.-S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. White, M. Zacchei, A. Zonca, A. 0004-6361 1432-0746 EDP Sciences Space and Planetary Science Astronomy and Astrophysics http://dx.doi.org/10.1051/0004-6361/201629504 <jats:p>The six parameters of the standard ΛCDM model have best-fit values derived from the <jats:italic>Planck</jats:italic> temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the <jats:italic>Planck</jats:italic> temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium <jats:italic>τ</jats:italic>, the baryon density <jats:italic>ω</jats:italic><jats:sub>b</jats:sub>, the matter density <jats:italic>ω</jats:italic><jats:sub>m</jats:sub>, the angular size of the sound horizon <jats:italic>θ</jats:italic><jats:sub>∗</jats:sub>, the spectral index of the primordial power spectrum, <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, and <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup> (where <jats:italic>A</jats:italic><jats:sub>s</jats:sub> is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment <jats:italic>ℓ</jats:italic> &lt; 800 in the <jats:italic>Planck</jats:italic> temperature power spectrum) and an all angular-scale data set (<jats:italic>ℓ</jats:italic> &lt; 2500<jats:italic>Planck</jats:italic> temperature power spectrum), each with a prior on <jats:italic>τ</jats:italic> of 0.07 ± 0.02. We find that the shifts, in units of the 1<jats:italic>σ</jats:italic> expected dispersion for each parameter, are { Δ<jats:italic>τ,</jats:italic>Δ<jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>,Δ<jats:italic>n</jats:italic><jats:sub>s</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>m</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>b</jats:sub>,Δ<jats:italic>θ</jats:italic><jats:sub>∗</jats:sub> } = { −1.7,−2.2,1.2,−2.0,1.1,0.9 }, with a <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value of 8.0. We find that this <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2<jats:italic>σ</jats:italic> in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing <jats:italic>ℓ</jats:italic> &lt; 800 instead to <jats:italic>ℓ</jats:italic>&gt; 800, or splitting at a different multipole, yields similar results. We examined the <jats:italic>ℓ</jats:italic> &lt; 800 model residuals in the <jats:italic>ℓ</jats:italic>&gt; 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is <jats:italic>τ</jats:italic>, which, at fixed <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>, affects the <jats:italic>ℓ</jats:italic>&gt; 800 temperature power spectrum solely through the associated change in <jats:italic>A</jats:italic><jats:sub>s</jats:sub> and the impact of that on the lensing potential power spectrum. We also ask, “what is it about the power spectrum at <jats:italic>ℓ</jats:italic> &lt; 800 that leads to somewhat different best-fit parameters than come from the full <jats:italic>ℓ</jats:italic> range?” We find that if we discard the data at <jats:italic>ℓ</jats:italic> &lt; 30, where there is a roughly 2<jats:italic>σ</jats:italic> downward fluctuation in power relative to the model that best fits the full <jats:italic>ℓ</jats:italic> range, the <jats:italic>ℓ</jats:italic> &lt; 800 best-fit parameters shift significantly towards the <jats:italic>ℓ</jats:italic> &lt; 2500 best-fit parameters. In contrast, including <jats:italic>ℓ</jats:italic> &lt; 30, this previously noted “low-<jats:italic>ℓ</jats:italic> deficit” drives <jats:italic>n</jats:italic><jats:sub>s</jats:sub> up and impacts parameters correlated with <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, such as <jats:italic>ω</jats:italic><jats:sub>m</jats:sub> and <jats:italic>H</jats:italic><jats:sub>0</jats:sub>. As expected, the <jats:italic>ℓ</jats:italic> &lt; 30 data have a much greater impact on the <jats:italic>ℓ</jats:italic> &lt; 800 best fit than on the <jats:italic>ℓ</jats:italic> &lt; 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-<jats:italic>ℓ</jats:italic> residuals and the deficit in low-<jats:italic>ℓ</jats:italic> power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between <jats:italic>Planck</jats:italic><jats:italic>TT</jats:italic> data and two other CMB data sets, namely the <jats:italic>Planck</jats:italic> lensing reconstruction and the <jats:italic>TT</jats:italic> power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.</jats:p> LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters <i>Planck </i>intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters Astronomy & Astrophysics
doi_str_mv 10.1051/0004-6361/201629504
facet_avail Online
Free
finc_class_facet Physik
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxNjI5NTA0
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxNjI5NTA0
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint EDP Sciences, 2017
imprint_str_mv EDP Sciences, 2017
issn 0004-6361
1432-0746
issn_str_mv 0004-6361
1432-0746
language Undetermined
mega_collection EDP Sciences (CrossRef)
match_str aghanim2017planckintermediateresultslifeaturesinthecosmicmicrowavebackgroundtemperaturepowerspectrumandshiftsincosmologicalparameterslifeaturesinthecosmicmicrowavebackgroundtemperaturepowerspectrumandshiftsincosmologicalparameters
publishDateSort 2017
publisher EDP Sciences
recordtype ai
record_format ai
series Astronomy & Astrophysics
source_id 49
title_sub LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_unstemmed Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_full Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_fullStr Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_full_unstemmed Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_short Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_sort <i>planck </i>intermediate results : li. features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
topic Space and Planetary Science
Astronomy and Astrophysics
url http://dx.doi.org/10.1051/0004-6361/201629504
publishDate 2017
physical A95
description <jats:p>The six parameters of the standard ΛCDM model have best-fit values derived from the <jats:italic>Planck</jats:italic> temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the <jats:italic>Planck</jats:italic> temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium <jats:italic>τ</jats:italic>, the baryon density <jats:italic>ω</jats:italic><jats:sub>b</jats:sub>, the matter density <jats:italic>ω</jats:italic><jats:sub>m</jats:sub>, the angular size of the sound horizon <jats:italic>θ</jats:italic><jats:sub>∗</jats:sub>, the spectral index of the primordial power spectrum, <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, and <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup> (where <jats:italic>A</jats:italic><jats:sub>s</jats:sub> is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment <jats:italic>ℓ</jats:italic> &lt; 800 in the <jats:italic>Planck</jats:italic> temperature power spectrum) and an all angular-scale data set (<jats:italic>ℓ</jats:italic> &lt; 2500<jats:italic>Planck</jats:italic> temperature power spectrum), each with a prior on <jats:italic>τ</jats:italic> of 0.07 ± 0.02. We find that the shifts, in units of the 1<jats:italic>σ</jats:italic> expected dispersion for each parameter, are { Δ<jats:italic>τ,</jats:italic>Δ<jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>,Δ<jats:italic>n</jats:italic><jats:sub>s</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>m</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>b</jats:sub>,Δ<jats:italic>θ</jats:italic><jats:sub>∗</jats:sub> } = { −1.7,−2.2,1.2,−2.0,1.1,0.9 }, with a <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value of 8.0. We find that this <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2<jats:italic>σ</jats:italic> in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing <jats:italic>ℓ</jats:italic> &lt; 800 instead to <jats:italic>ℓ</jats:italic>&gt; 800, or splitting at a different multipole, yields similar results. We examined the <jats:italic>ℓ</jats:italic> &lt; 800 model residuals in the <jats:italic>ℓ</jats:italic>&gt; 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is <jats:italic>τ</jats:italic>, which, at fixed <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>, affects the <jats:italic>ℓ</jats:italic>&gt; 800 temperature power spectrum solely through the associated change in <jats:italic>A</jats:italic><jats:sub>s</jats:sub> and the impact of that on the lensing potential power spectrum. We also ask, “what is it about the power spectrum at <jats:italic>ℓ</jats:italic> &lt; 800 that leads to somewhat different best-fit parameters than come from the full <jats:italic>ℓ</jats:italic> range?” We find that if we discard the data at <jats:italic>ℓ</jats:italic> &lt; 30, where there is a roughly 2<jats:italic>σ</jats:italic> downward fluctuation in power relative to the model that best fits the full <jats:italic>ℓ</jats:italic> range, the <jats:italic>ℓ</jats:italic> &lt; 800 best-fit parameters shift significantly towards the <jats:italic>ℓ</jats:italic> &lt; 2500 best-fit parameters. In contrast, including <jats:italic>ℓ</jats:italic> &lt; 30, this previously noted “low-<jats:italic>ℓ</jats:italic> deficit” drives <jats:italic>n</jats:italic><jats:sub>s</jats:sub> up and impacts parameters correlated with <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, such as <jats:italic>ω</jats:italic><jats:sub>m</jats:sub> and <jats:italic>H</jats:italic><jats:sub>0</jats:sub>. As expected, the <jats:italic>ℓ</jats:italic> &lt; 30 data have a much greater impact on the <jats:italic>ℓ</jats:italic> &lt; 800 best fit than on the <jats:italic>ℓ</jats:italic> &lt; 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-<jats:italic>ℓ</jats:italic> residuals and the deficit in low-<jats:italic>ℓ</jats:italic> power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between <jats:italic>Planck</jats:italic><jats:italic>TT</jats:italic> data and two other CMB data sets, namely the <jats:italic>Planck</jats:italic> lensing reconstruction and the <jats:italic>TT</jats:italic> power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.</jats:p>
container_start_page 0
container_title Astronomy & Astrophysics
container_volume 607
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792345260615008256
geogr_code not assigned
last_indexed 2024-03-01T17:20:40.556Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Planck+intermediate+results+%3A+LI.+Features+in+the+cosmic+microwave+background+temperature++power+spectrum+and+shifts+in+cosmological+parameters&rft.date=2017-11-01&genre=article&issn=1432-0746&volume=607&pages=A95&jtitle=Astronomy+%26+Astrophysics&atitle=%3Ci%3EPlanck+%3C%2Fi%3Eintermediate+results+%3A+LI.+Features+in+the+cosmic+microwave+background+temperature++power+spectrum+and+shifts+in+cosmological+parameters&aulast=Zonca&aufirst=A.&rft_id=info%3Adoi%2F10.1051%2F0004-6361%2F201629504&rft.language%5B0%5D=und
SOLR
_version_ 1792345260615008256
author Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J.-F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J.-L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A.-S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., Zonca, A.
author_facet Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J.-F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J.-L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A.-S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., Zonca, A., Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J.-F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J.-L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A.-S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., Zonca, A.
author_sort aghanim, n.
container_start_page 0
container_title Astronomy & Astrophysics
container_volume 607
description <jats:p>The six parameters of the standard ΛCDM model have best-fit values derived from the <jats:italic>Planck</jats:italic> temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the <jats:italic>Planck</jats:italic> temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium <jats:italic>τ</jats:italic>, the baryon density <jats:italic>ω</jats:italic><jats:sub>b</jats:sub>, the matter density <jats:italic>ω</jats:italic><jats:sub>m</jats:sub>, the angular size of the sound horizon <jats:italic>θ</jats:italic><jats:sub>∗</jats:sub>, the spectral index of the primordial power spectrum, <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, and <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup> (where <jats:italic>A</jats:italic><jats:sub>s</jats:sub> is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment <jats:italic>ℓ</jats:italic> &lt; 800 in the <jats:italic>Planck</jats:italic> temperature power spectrum) and an all angular-scale data set (<jats:italic>ℓ</jats:italic> &lt; 2500<jats:italic>Planck</jats:italic> temperature power spectrum), each with a prior on <jats:italic>τ</jats:italic> of 0.07 ± 0.02. We find that the shifts, in units of the 1<jats:italic>σ</jats:italic> expected dispersion for each parameter, are { Δ<jats:italic>τ,</jats:italic>Δ<jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>,Δ<jats:italic>n</jats:italic><jats:sub>s</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>m</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>b</jats:sub>,Δ<jats:italic>θ</jats:italic><jats:sub>∗</jats:sub> } = { −1.7,−2.2,1.2,−2.0,1.1,0.9 }, with a <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value of 8.0. We find that this <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2<jats:italic>σ</jats:italic> in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing <jats:italic>ℓ</jats:italic> &lt; 800 instead to <jats:italic>ℓ</jats:italic>&gt; 800, or splitting at a different multipole, yields similar results. We examined the <jats:italic>ℓ</jats:italic> &lt; 800 model residuals in the <jats:italic>ℓ</jats:italic>&gt; 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is <jats:italic>τ</jats:italic>, which, at fixed <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>, affects the <jats:italic>ℓ</jats:italic>&gt; 800 temperature power spectrum solely through the associated change in <jats:italic>A</jats:italic><jats:sub>s</jats:sub> and the impact of that on the lensing potential power spectrum. We also ask, “what is it about the power spectrum at <jats:italic>ℓ</jats:italic> &lt; 800 that leads to somewhat different best-fit parameters than come from the full <jats:italic>ℓ</jats:italic> range?” We find that if we discard the data at <jats:italic>ℓ</jats:italic> &lt; 30, where there is a roughly 2<jats:italic>σ</jats:italic> downward fluctuation in power relative to the model that best fits the full <jats:italic>ℓ</jats:italic> range, the <jats:italic>ℓ</jats:italic> &lt; 800 best-fit parameters shift significantly towards the <jats:italic>ℓ</jats:italic> &lt; 2500 best-fit parameters. In contrast, including <jats:italic>ℓ</jats:italic> &lt; 30, this previously noted “low-<jats:italic>ℓ</jats:italic> deficit” drives <jats:italic>n</jats:italic><jats:sub>s</jats:sub> up and impacts parameters correlated with <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, such as <jats:italic>ω</jats:italic><jats:sub>m</jats:sub> and <jats:italic>H</jats:italic><jats:sub>0</jats:sub>. As expected, the <jats:italic>ℓ</jats:italic> &lt; 30 data have a much greater impact on the <jats:italic>ℓ</jats:italic> &lt; 800 best fit than on the <jats:italic>ℓ</jats:italic> &lt; 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-<jats:italic>ℓ</jats:italic> residuals and the deficit in low-<jats:italic>ℓ</jats:italic> power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between <jats:italic>Planck</jats:italic><jats:italic>TT</jats:italic> data and two other CMB data sets, namely the <jats:italic>Planck</jats:italic> lensing reconstruction and the <jats:italic>TT</jats:italic> power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.</jats:p>
doi_str_mv 10.1051/0004-6361/201629504
facet_avail Online, Free
finc_class_facet Physik, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA1MS8wMDA0LTYzNjEvMjAxNjI5NTA0
imprint EDP Sciences, 2017
imprint_str_mv EDP Sciences, 2017
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0004-6361, 1432-0746
issn_str_mv 0004-6361, 1432-0746
language Undetermined
last_indexed 2024-03-01T17:20:40.556Z
match_str aghanim2017planckintermediateresultslifeaturesinthecosmicmicrowavebackgroundtemperaturepowerspectrumandshiftsincosmologicalparameterslifeaturesinthecosmicmicrowavebackgroundtemperaturepowerspectrumandshiftsincosmologicalparameters
mega_collection EDP Sciences (CrossRef)
physical A95
publishDate 2017
publishDateSort 2017
publisher EDP Sciences
record_format ai
recordtype ai
series Astronomy & Astrophysics
source_id 49
spelling Aghanim, N. Akrami, Y. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J.-F. Challinor, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Doré, O. Ducout, A. Dupac, X. Dusini, S. Efstathiou, G. Elsner, F. Enßlin, T. A. Eriksen, H. K. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Génova-Santos, R. T. Gerbino, M. González-Nuevo, J. Górski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihänen, E. Keskitalo, R. Kiiveri, K. Kim, J. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J.-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lilley, M. Lindholm, V. López-Caniego, M. Lubin, P. M. Ma, Y.-Z. Macías-Pérez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martínez-González, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Mennella, A. Migliaccio, M. Millea, M. Miville-Deschênes, M.-A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Narimani, A. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Pettorino, V. Piacentini, F. Polastri, L. Polenta, G. Puget, J.-L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubiño-Martín, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Stanco, L. Suur-Uski, A.-S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. White, M. Zacchei, A. Zonca, A. 0004-6361 1432-0746 EDP Sciences Space and Planetary Science Astronomy and Astrophysics http://dx.doi.org/10.1051/0004-6361/201629504 <jats:p>The six parameters of the standard ΛCDM model have best-fit values derived from the <jats:italic>Planck</jats:italic> temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the <jats:italic>Planck</jats:italic> temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium <jats:italic>τ</jats:italic>, the baryon density <jats:italic>ω</jats:italic><jats:sub>b</jats:sub>, the matter density <jats:italic>ω</jats:italic><jats:sub>m</jats:sub>, the angular size of the sound horizon <jats:italic>θ</jats:italic><jats:sub>∗</jats:sub>, the spectral index of the primordial power spectrum, <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, and <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup> (where <jats:italic>A</jats:italic><jats:sub>s</jats:sub> is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment <jats:italic>ℓ</jats:italic> &lt; 800 in the <jats:italic>Planck</jats:italic> temperature power spectrum) and an all angular-scale data set (<jats:italic>ℓ</jats:italic> &lt; 2500<jats:italic>Planck</jats:italic> temperature power spectrum), each with a prior on <jats:italic>τ</jats:italic> of 0.07 ± 0.02. We find that the shifts, in units of the 1<jats:italic>σ</jats:italic> expected dispersion for each parameter, are { Δ<jats:italic>τ,</jats:italic>Δ<jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>,Δ<jats:italic>n</jats:italic><jats:sub>s</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>m</jats:sub>,Δ<jats:italic>ω</jats:italic><jats:sub>b</jats:sub>,Δ<jats:italic>θ</jats:italic><jats:sub>∗</jats:sub> } = { −1.7,−2.2,1.2,−2.0,1.1,0.9 }, with a <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value of 8.0. We find that this <jats:italic>χ</jats:italic><jats:sup>2</jats:sup> value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2<jats:italic>σ</jats:italic> in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing <jats:italic>ℓ</jats:italic> &lt; 800 instead to <jats:italic>ℓ</jats:italic>&gt; 800, or splitting at a different multipole, yields similar results. We examined the <jats:italic>ℓ</jats:italic> &lt; 800 model residuals in the <jats:italic>ℓ</jats:italic>&gt; 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is <jats:italic>τ</jats:italic>, which, at fixed <jats:italic>A</jats:italic><jats:sub>s</jats:sub>e<jats:sup>− 2<jats:italic>τ</jats:italic></jats:sup>, affects the <jats:italic>ℓ</jats:italic>&gt; 800 temperature power spectrum solely through the associated change in <jats:italic>A</jats:italic><jats:sub>s</jats:sub> and the impact of that on the lensing potential power spectrum. We also ask, “what is it about the power spectrum at <jats:italic>ℓ</jats:italic> &lt; 800 that leads to somewhat different best-fit parameters than come from the full <jats:italic>ℓ</jats:italic> range?” We find that if we discard the data at <jats:italic>ℓ</jats:italic> &lt; 30, where there is a roughly 2<jats:italic>σ</jats:italic> downward fluctuation in power relative to the model that best fits the full <jats:italic>ℓ</jats:italic> range, the <jats:italic>ℓ</jats:italic> &lt; 800 best-fit parameters shift significantly towards the <jats:italic>ℓ</jats:italic> &lt; 2500 best-fit parameters. In contrast, including <jats:italic>ℓ</jats:italic> &lt; 30, this previously noted “low-<jats:italic>ℓ</jats:italic> deficit” drives <jats:italic>n</jats:italic><jats:sub>s</jats:sub> up and impacts parameters correlated with <jats:italic>n</jats:italic><jats:sub>s</jats:sub>, such as <jats:italic>ω</jats:italic><jats:sub>m</jats:sub> and <jats:italic>H</jats:italic><jats:sub>0</jats:sub>. As expected, the <jats:italic>ℓ</jats:italic> &lt; 30 data have a much greater impact on the <jats:italic>ℓ</jats:italic> &lt; 800 best fit than on the <jats:italic>ℓ</jats:italic> &lt; 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-<jats:italic>ℓ</jats:italic> residuals and the deficit in low-<jats:italic>ℓ</jats:italic> power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between <jats:italic>Planck</jats:italic><jats:italic>TT</jats:italic> data and two other CMB data sets, namely the <jats:italic>Planck</jats:italic> lensing reconstruction and the <jats:italic>TT</jats:italic> power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.</jats:p> LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters <i>Planck </i>intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters Astronomy & Astrophysics
spellingShingle Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J.-F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J.-L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A.-S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., Zonca, A., Astronomy & Astrophysics, Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters, Space and Planetary Science, Astronomy and Astrophysics
title Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_full Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_fullStr Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_full_unstemmed Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_short Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_sort <i>planck </i>intermediate results : li. features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_sub LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
title_unstemmed Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
topic Space and Planetary Science, Astronomy and Astrophysics
url http://dx.doi.org/10.1051/0004-6361/201629504