author_facet Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
author Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
spellingShingle Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
Bioscience Reports
Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
Cell Biology
Molecular Biology
Biochemistry
Biophysics
author_sort langendorf, christopher g.
spelling Langendorf, Christopher G. Tuck, Kellie L. Key, Trevor L. G. Fenalti, Gustavo Pike, Robert N. Rosado, Carlos J. Wong, Anders S. M. Buckle, Ashley M. Law, Ruby H. P. Whisstock, James C. 0144-8463 1573-4935 Portland Press Ltd. Cell Biology Molecular Biology Biochemistry Biophysics http://dx.doi.org/10.1042/bsr20120111 <jats:p>Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.</jats:p> Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates Bioscience Reports
doi_str_mv 10.1042/bsr20120111
facet_avail Online
Free
finc_class_facet Physik
Biologie
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA0Mi9ic3IyMDEyMDExMQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA0Mi9ic3IyMDEyMDExMQ
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Portland Press Ltd., 2013
imprint_str_mv Portland Press Ltd., 2013
issn 1573-4935
0144-8463
issn_str_mv 1573-4935
0144-8463
language English
mega_collection Portland Press Ltd. (CrossRef)
match_str langendorf2013structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
publishDateSort 2013
publisher Portland Press Ltd.
recordtype ai
record_format ai
series Bioscience Reports
source_id 49
title Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_unstemmed Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_fullStr Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full_unstemmed Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_short Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_sort structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
topic Cell Biology
Molecular Biology
Biochemistry
Biophysics
url http://dx.doi.org/10.1042/bsr20120111
publishDate 2013
physical
description <jats:p>Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.</jats:p>
container_issue 1
container_start_page 0
container_title Bioscience Reports
container_volume 33
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792342351355576321
geogr_code not assigned
last_indexed 2024-03-01T16:34:25.64Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Structural+characterization+of+the+mechanism+through+which+human+glutamic+acid+decarboxylase+auto-activates&rft.date=2013-02-01&genre=article&issn=1573-4935&volume=33&issue=1&jtitle=Bioscience+Reports&atitle=Structural+characterization+of+the+mechanism+through+which+human+glutamic+acid+decarboxylase+auto-activates&aulast=Whisstock&aufirst=James%C2%A0C.&rft_id=info%3Adoi%2F10.1042%2Fbsr20120111&rft.language%5B0%5D=eng
SOLR
_version_ 1792342351355576321
author Langendorf, Christopher G., Tuck, Kellie L., Key, Trevor L. G., Fenalti, Gustavo, Pike, Robert N., Rosado, Carlos J., Wong, Anders S. M., Buckle, Ashley M., Law, Ruby H. P., Whisstock, James C.
author_facet Langendorf, Christopher G., Tuck, Kellie L., Key, Trevor L. G., Fenalti, Gustavo, Pike, Robert N., Rosado, Carlos J., Wong, Anders S. M., Buckle, Ashley M., Law, Ruby H. P., Whisstock, James C., Langendorf, Christopher G., Tuck, Kellie L., Key, Trevor L. G., Fenalti, Gustavo, Pike, Robert N., Rosado, Carlos J., Wong, Anders S. M., Buckle, Ashley M., Law, Ruby H. P., Whisstock, James C.
author_sort langendorf, christopher g.
container_issue 1
container_start_page 0
container_title Bioscience Reports
container_volume 33
description <jats:p>Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.</jats:p>
doi_str_mv 10.1042/bsr20120111
facet_avail Online, Free
finc_class_facet Physik, Biologie, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA0Mi9ic3IyMDEyMDExMQ
imprint Portland Press Ltd., 2013
imprint_str_mv Portland Press Ltd., 2013
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1573-4935, 0144-8463
issn_str_mv 1573-4935, 0144-8463
language English
last_indexed 2024-03-01T16:34:25.64Z
match_str langendorf2013structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
mega_collection Portland Press Ltd. (CrossRef)
physical
publishDate 2013
publishDateSort 2013
publisher Portland Press Ltd.
record_format ai
recordtype ai
series Bioscience Reports
source_id 49
spelling Langendorf, Christopher G. Tuck, Kellie L. Key, Trevor L. G. Fenalti, Gustavo Pike, Robert N. Rosado, Carlos J. Wong, Anders S. M. Buckle, Ashley M. Law, Ruby H. P. Whisstock, James C. 0144-8463 1573-4935 Portland Press Ltd. Cell Biology Molecular Biology Biochemistry Biophysics http://dx.doi.org/10.1042/bsr20120111 <jats:p>Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.</jats:p> Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates Bioscience Reports
spellingShingle Langendorf, Christopher G., Tuck, Kellie L., Key, Trevor L. G., Fenalti, Gustavo, Pike, Robert N., Rosado, Carlos J., Wong, Anders S. M., Buckle, Ashley M., Law, Ruby H. P., Whisstock, James C., Bioscience Reports, Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates, Cell Biology, Molecular Biology, Biochemistry, Biophysics
title Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_fullStr Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full_unstemmed Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_short Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_sort structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_unstemmed Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
topic Cell Biology, Molecular Biology, Biochemistry, Biophysics
url http://dx.doi.org/10.1042/bsr20120111