Eintrag weiter verarbeiten

Functionalization of two-dimensional materials with polymer brushes

Gespeichert in:

Personen und Körperschaften: Sheng, Wenbo, Fen, Xinliang, Voit, Brigitte, Synytska, Alla
Titel: Functionalization of two-dimensional materials with polymer brushes
Hochschulschriftenvermerk: Dissertation, Technische Universität Dresden, 2019
Format: E-Book Hochschulschrift
Sprache: Englisch
veröffentlicht:
Online-Ausg.. 2020
Schlagwörter:
Quelle: Qucosa
LEADER 04464nam a2200325 c 4500
001 22-14-qucosa2-382937
007 cr
008 2020 eng
037 |a urn:nbn:de:bsz:14-qucosa2-382937 
041 |a eng 
082 |a 540 
084 |a Vk 8007  |2 rvk 
100 |a Sheng, Wenbo 
245 |a Functionalization of two-dimensional materials with polymer brushes 
336 |b txt 
338 |b nc 
533 |a Online-Ausg.  |d 2020  |e Online-Ressource (Text)  |f Technische Universität Dresden 
502 |b Dissertation  |c Technische Universität Dresden  |d 2019 
520 |a Polymer brushes can be used to tailor the physical and chemical properties of materials on demand to meet potential applications. Therefore, fabrication of polymer brushes with well-defined structure and functional groups enables the engineering of new materials with diverse functions. In addition, two-dimensional (2D) materials have their unique physical/chemical properties and potential applications in (opt)electronics, catalysis, energy storage, sensing, and other related fields. However, the dispersibility, chemical stability, charge transport behavior, mechanical properties of the 2D materials hinder their further applications. Therefore, combining polymer brushes and 2D materials may bring in new properties which are not available by either of them alone. This thesis focuses on brushing up 2D materials (from inorganic to organic) with universal photografting techniques. (1) The first chapter introduces the outline and research content of the thesis. (2) The second chapter describes the background of 2D materials and polymer brushes. In particular, this chapter analyzes mechanisms, drawbacks and benefits of different polymerization methods, and also summarizes the general approaches to grow polymer brushes on 2D material surfaces, coupling with potential applications of polymer functionalized 2D materials. (3) The third chapter shows the motivation and aim of this thesis. (4) The fourth chapter discusses the results of the functionalization of hexagonal boron nitride (hBN), MoS2, graphitic-carbon nitride (gCN), alkyl-polydopamine (alkyl-PDA), and conjugated 2D polymers (2DPs) with polymer brushes by the same self-initiated photografting and photopolymerization (SIPGP) method and their related applications in detail, respectively. First, the direct photopolymerization of vinyl monomers results in the formation of thick and homogeneous polymer brushes covalently bounded to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions. Second, the chapter demonstrates the MoS2 can be directly modified with polymer brushes by SIPGP. After modifying MoS2 with polymer brushes, the dispersibility of polymer brushes-modified MoS2 was obviously improved. Third, the polymer brushes functionalized gCN significantly improves the dispersibility. Application of polymer brush functionalized gCN as excellent recyclable substrates for an outstanding SERS as well as photocatalytic degradation of dyes is demonstrated. Fourth, to directly obtain the 2D materials with functional groups, the chapter proposes a facile method to prepare amphiphilic polymeric Janus nanosheets with hydrophilic PDA and hydrophobic alkyl chains at both sides. Benefiting from the Janus property of the alkyl-PDA nanosheets, the nanosheets can be grafted polymer brushes through photografting and be conjugated Fe3O4 nanoparticles selectively onto the PDA side. Finally, the chapter shows that various polymer brushes can be directly grafted onto 2DPs and freestanding system is also obtained. Moreover, it is found that the morphology of freestanding system quickly and reversibly responds to solvent quality by shrinking/stretching. (5) The fifth chapter addresses the general conclusion and future prospective of the whole work. (6) The sixth chapter describes the experiment part of the whole thesis. 
650 |a Polymer Brushes 
650 |a Two-Dimensional Materials 
650 |a Polymerbürsten 
650 |a Zweidimensionale Materialien 
655 |a Hochschulschrift  |2 gnd-content 
700 |a Fen, Xinliang 
700 |a Voit, Brigitte 
700 |a Synytska, Alla 
856 4 0 |q text/html  |u https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-382937  |z Online-Zugriff 
935 |c hs 
980 |a 14-qucosa2-382937  |b 22  |c sid-22-col-qucosa 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Functionalization+of+two-dimensional+materials+with+polymer+brushes&rft.date=&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Sheng%2C+Wenbo&rft.format=eBook&rft.language=English
SOLR
_version_ 1797727575583227904
author Sheng, Wenbo
author2 Fen, Xinliang, Voit, Brigitte, Synytska, Alla
author2_role , ,
author2_variant x f xf, b v bv, a s as
author_facet Sheng, Wenbo, Fen, Xinliang, Voit, Brigitte, Synytska, Alla
author_role
author_sort Sheng, Wenbo
author_variant w s ws
building Library A
collection sid-22-col-qucosa
contents Polymer brushes can be used to tailor the physical and chemical properties of materials on demand to meet potential applications. Therefore, fabrication of polymer brushes with well-defined structure and functional groups enables the engineering of new materials with diverse functions. In addition, two-dimensional (2D) materials have their unique physical/chemical properties and potential applications in (opt)electronics, catalysis, energy storage, sensing, and other related fields. However, the dispersibility, chemical stability, charge transport behavior, mechanical properties of the 2D materials hinder their further applications. Therefore, combining polymer brushes and 2D materials may bring in new properties which are not available by either of them alone. This thesis focuses on brushing up 2D materials (from inorganic to organic) with universal photografting techniques. (1) The first chapter introduces the outline and research content of the thesis. (2) The second chapter describes the background of 2D materials and polymer brushes. In particular, this chapter analyzes mechanisms, drawbacks and benefits of different polymerization methods, and also summarizes the general approaches to grow polymer brushes on 2D material surfaces, coupling with potential applications of polymer functionalized 2D materials. (3) The third chapter shows the motivation and aim of this thesis. (4) The fourth chapter discusses the results of the functionalization of hexagonal boron nitride (hBN), MoS2, graphitic-carbon nitride (gCN), alkyl-polydopamine (alkyl-PDA), and conjugated 2D polymers (2DPs) with polymer brushes by the same self-initiated photografting and photopolymerization (SIPGP) method and their related applications in detail, respectively. First, the direct photopolymerization of vinyl monomers results in the formation of thick and homogeneous polymer brushes covalently bounded to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions. Second, the chapter demonstrates the MoS2 can be directly modified with polymer brushes by SIPGP. After modifying MoS2 with polymer brushes, the dispersibility of polymer brushes-modified MoS2 was obviously improved. Third, the polymer brushes functionalized gCN significantly improves the dispersibility. Application of polymer brush functionalized gCN as excellent recyclable substrates for an outstanding SERS as well as photocatalytic degradation of dyes is demonstrated. Fourth, to directly obtain the 2D materials with functional groups, the chapter proposes a facile method to prepare amphiphilic polymeric Janus nanosheets with hydrophilic PDA and hydrophobic alkyl chains at both sides. Benefiting from the Janus property of the alkyl-PDA nanosheets, the nanosheets can be grafted polymer brushes through photografting and be conjugated Fe3O4 nanoparticles selectively onto the PDA side. Finally, the chapter shows that various polymer brushes can be directly grafted onto 2DPs and freestanding system is also obtained. Moreover, it is found that the morphology of freestanding system quickly and reversibly responds to solvent quality by shrinking/stretching. (5) The fifth chapter addresses the general conclusion and future prospective of the whole work. (6) The sixth chapter describes the experiment part of the whole thesis.
dewey-full 540
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 540 - Chemistry and allied sciences
dewey-raw 540
dewey-search 540
dewey-sort 3540
dewey-tens 540 - Chemistry and allied sciences
facet_avail Online, Free
finc_class_facet Chemie und Pharmazie
fincclass_txtF_mv science-chemistry
format eBook, Thesis
format_access_txtF_mv Thesis
format_de14 Thesis, Book, E-Book
format_de15 Thesis, Book, E-Book
format_del152 Buch, Buch
format_detail_txtF_mv text-online-monograph-independent-thesis
format_dezi4 e-Book
format_finc Book, E-Book, Thesis
format_legacy Thesis, Book
format_legacy_nrw Thesis, Book, E-Book
format_nrw Thesis, Book, E-Book
format_strict_txtF_mv E-Thesis
genre Hochschulschrift gnd-content
genre_facet Hochschulschrift
geogr_code not assigned
geogr_code_person not assigned
id 22-14-qucosa2-382937
illustrated Not Illustrated
imprint Online-Ausg., 2020
imprint_str_mv Online-Ausg.: 2020
institution DE-105, DE-Gla1, DE-Brt1, DE-D161, DE-540, DE-Pl11, DE-Rs1, DE-Bn3, DE-Zi4, DE-Zwi2, DE-D117, DE-Mh31, DE-D275, DE-Ch1, DE-15, DE-D13, DE-L242, DE-L229, DE-L328
is_hierarchy_id
is_hierarchy_title
language English
last_indexed 2024-04-30T03:10:16.327Z
match_str sheng2020functionalizationoftwodimensionalmaterialswithpolymerbrushes
mega_collection Qucosa
publishDateSort 2020
record_format marcfinc
record_id 14-qucosa2-382937
recordtype marcfinc
rvk_facet Vk 8007
source_id 22
spelling Sheng, Wenbo, Functionalization of two-dimensional materials with polymer brushes, txt, nc, Online-Ausg. 2020 Online-Ressource (Text) Technische Universität Dresden, Dissertation Technische Universität Dresden 2019, Polymer brushes can be used to tailor the physical and chemical properties of materials on demand to meet potential applications. Therefore, fabrication of polymer brushes with well-defined structure and functional groups enables the engineering of new materials with diverse functions. In addition, two-dimensional (2D) materials have their unique physical/chemical properties and potential applications in (opt)electronics, catalysis, energy storage, sensing, and other related fields. However, the dispersibility, chemical stability, charge transport behavior, mechanical properties of the 2D materials hinder their further applications. Therefore, combining polymer brushes and 2D materials may bring in new properties which are not available by either of them alone. This thesis focuses on brushing up 2D materials (from inorganic to organic) with universal photografting techniques. (1) The first chapter introduces the outline and research content of the thesis. (2) The second chapter describes the background of 2D materials and polymer brushes. In particular, this chapter analyzes mechanisms, drawbacks and benefits of different polymerization methods, and also summarizes the general approaches to grow polymer brushes on 2D material surfaces, coupling with potential applications of polymer functionalized 2D materials. (3) The third chapter shows the motivation and aim of this thesis. (4) The fourth chapter discusses the results of the functionalization of hexagonal boron nitride (hBN), MoS2, graphitic-carbon nitride (gCN), alkyl-polydopamine (alkyl-PDA), and conjugated 2D polymers (2DPs) with polymer brushes by the same self-initiated photografting and photopolymerization (SIPGP) method and their related applications in detail, respectively. First, the direct photopolymerization of vinyl monomers results in the formation of thick and homogeneous polymer brushes covalently bounded to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions. Second, the chapter demonstrates the MoS2 can be directly modified with polymer brushes by SIPGP. After modifying MoS2 with polymer brushes, the dispersibility of polymer brushes-modified MoS2 was obviously improved. Third, the polymer brushes functionalized gCN significantly improves the dispersibility. Application of polymer brush functionalized gCN as excellent recyclable substrates for an outstanding SERS as well as photocatalytic degradation of dyes is demonstrated. Fourth, to directly obtain the 2D materials with functional groups, the chapter proposes a facile method to prepare amphiphilic polymeric Janus nanosheets with hydrophilic PDA and hydrophobic alkyl chains at both sides. Benefiting from the Janus property of the alkyl-PDA nanosheets, the nanosheets can be grafted polymer brushes through photografting and be conjugated Fe3O4 nanoparticles selectively onto the PDA side. Finally, the chapter shows that various polymer brushes can be directly grafted onto 2DPs and freestanding system is also obtained. Moreover, it is found that the morphology of freestanding system quickly and reversibly responds to solvent quality by shrinking/stretching. (5) The fifth chapter addresses the general conclusion and future prospective of the whole work. (6) The sixth chapter describes the experiment part of the whole thesis., Polymer Brushes, Two-Dimensional Materials, Polymerbürsten, Zweidimensionale Materialien, Hochschulschrift gnd-content, Fen, Xinliang, Voit, Brigitte, Synytska, Alla, text/html https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-382937 Online-Zugriff
spellingShingle Sheng, Wenbo, Functionalization of two-dimensional materials with polymer brushes, Polymer brushes can be used to tailor the physical and chemical properties of materials on demand to meet potential applications. Therefore, fabrication of polymer brushes with well-defined structure and functional groups enables the engineering of new materials with diverse functions. In addition, two-dimensional (2D) materials have their unique physical/chemical properties and potential applications in (opt)electronics, catalysis, energy storage, sensing, and other related fields. However, the dispersibility, chemical stability, charge transport behavior, mechanical properties of the 2D materials hinder their further applications. Therefore, combining polymer brushes and 2D materials may bring in new properties which are not available by either of them alone. This thesis focuses on brushing up 2D materials (from inorganic to organic) with universal photografting techniques. (1) The first chapter introduces the outline and research content of the thesis. (2) The second chapter describes the background of 2D materials and polymer brushes. In particular, this chapter analyzes mechanisms, drawbacks and benefits of different polymerization methods, and also summarizes the general approaches to grow polymer brushes on 2D material surfaces, coupling with potential applications of polymer functionalized 2D materials. (3) The third chapter shows the motivation and aim of this thesis. (4) The fourth chapter discusses the results of the functionalization of hexagonal boron nitride (hBN), MoS2, graphitic-carbon nitride (gCN), alkyl-polydopamine (alkyl-PDA), and conjugated 2D polymers (2DPs) with polymer brushes by the same self-initiated photografting and photopolymerization (SIPGP) method and their related applications in detail, respectively. First, the direct photopolymerization of vinyl monomers results in the formation of thick and homogeneous polymer brushes covalently bounded to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions. Second, the chapter demonstrates the MoS2 can be directly modified with polymer brushes by SIPGP. After modifying MoS2 with polymer brushes, the dispersibility of polymer brushes-modified MoS2 was obviously improved. Third, the polymer brushes functionalized gCN significantly improves the dispersibility. Application of polymer brush functionalized gCN as excellent recyclable substrates for an outstanding SERS as well as photocatalytic degradation of dyes is demonstrated. Fourth, to directly obtain the 2D materials with functional groups, the chapter proposes a facile method to prepare amphiphilic polymeric Janus nanosheets with hydrophilic PDA and hydrophobic alkyl chains at both sides. Benefiting from the Janus property of the alkyl-PDA nanosheets, the nanosheets can be grafted polymer brushes through photografting and be conjugated Fe3O4 nanoparticles selectively onto the PDA side. Finally, the chapter shows that various polymer brushes can be directly grafted onto 2DPs and freestanding system is also obtained. Moreover, it is found that the morphology of freestanding system quickly and reversibly responds to solvent quality by shrinking/stretching. (5) The fifth chapter addresses the general conclusion and future prospective of the whole work. (6) The sixth chapter describes the experiment part of the whole thesis., Polymer Brushes, Two-Dimensional Materials, Polymerbürsten, Zweidimensionale Materialien, Hochschulschrift
title Functionalization of two-dimensional materials with polymer brushes
title_auth Functionalization of two-dimensional materials with polymer brushes
title_full Functionalization of two-dimensional materials with polymer brushes
title_fullStr Functionalization of two-dimensional materials with polymer brushes
title_full_unstemmed Functionalization of two-dimensional materials with polymer brushes
title_short Functionalization of two-dimensional materials with polymer brushes
title_sort functionalization of two-dimensional materials with polymer brushes
title_unstemmed Functionalization of two-dimensional materials with polymer brushes
topic Polymer Brushes, Two-Dimensional Materials, Polymerbürsten, Zweidimensionale Materialien, Hochschulschrift
topic_facet Polymer Brushes, Two-Dimensional Materials, Polymerbürsten, Zweidimensionale Materialien, Hochschulschrift
url https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-382937
urn urn:nbn:de:bsz:14-qucosa2-382937
work_keys_str_mv AT shengwenbo functionalizationoftwodimensionalmaterialswithpolymerbrushes, AT fenxinliang functionalizationoftwodimensionalmaterialswithpolymerbrushes, AT voitbrigitte functionalizationoftwodimensionalmaterialswithpolymerbrushes, AT synytskaalla functionalizationoftwodimensionalmaterialswithpolymerbrushes