Eintrag weiter verarbeiten

Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity: Interface Engineering of MoS2/Ni3S2 Heterostructures for...

Gespeichert in:

Personen und Körperschaften: Zhang, Jian, Wang, Tao, Pohl, Darius, Rellinghaus, Bernd, Dong, Renhao, Liu, Shaohua, Zhuang, Xiaodong, Feng, Xinliang
Titel: Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity: Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
Format: E-Artikel
Sprache: Englisch
veröffentlicht:
Weinheim Wiley-VCH Verlag
Online-Ausg.. 2018
Gesamtaufnahme: , Angewandte Chemie: a journal of the Gesellschaft Deutscher Chemiker International Edition (2016), 55(23). S. 6702-6707. ISSN: 1521-3773. DOI: 10.1002/anie.201602237
Schlagwörter:
Quelle: Qucosa
LEADER 02592nab a2200409 c 4500
001 22-14-qucosa-235457
007 cr
008 2018 eng
037 |a urn:nbn:de:bsz:14-qucosa-235457 
041 |a eng 
082 |a 540 
084 |a Va 1120  |2 rvk 
100 |a Zhang, Jian 
245 |a Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity  |b Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity 
264 |a Weinheim  |b Wiley-VCH Verlag 
533 |a Online-Ausg.  |d 2018  |e Online-Ressource (Text)  |f Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 
520 |a To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Here, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ~218 mV at 10 mA cm-2, which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyser delivers a current density of 10 mA cm-2 at a very low cell voltage of ~1.56 V. In combination with density function theory (DFT) calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygencontaining intermediates, thus accelerating the overall electrochemical water splitting. 
650 |a Grenzflächentechnik 
650 |a Wasserspaltung 
650 |a Elektrokatalysatoren 
650 |a Nickelsulfid 
650 |a Molybdändisulfid 
650 |a Interface Engineering 
650 |a Water Splitting 
650 |a Electrocatalysts 
650 |a Nickel Sulfide 
650 |a Molybdenum Disulfide 
700 |a Wang, Tao 
700 |a Pohl, Darius 
700 |a Rellinghaus, Bernd 
700 |a Dong, Renhao 
700 |a Liu, Shaohua 
700 |a Zhuang, Xiaodong 
700 |a Feng, Xinliang 
773 |g Angewandte Chemie: a journal of the Gesellschaft Deutscher Chemiker International Edition (2016), 55(23). S. 6702-6707. ISSN: 1521-3773. DOI: 10.1002/anie.201602237 
856 4 0 |q text/html  |u https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-235457  |z Online-Zugriff 
980 |a 14-qucosa-235457  |b 22  |c sid-22-col-qucosa 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Interface+Engineering+of+MoS2%2FNi3S2+Heterostructures+for+Highly+Enhanced+Electrochemical+Overall+Water+Splitting+Activity%3A+Interface+Engineering+of+MoS2%2FNi3S2+Heterostructures+for+Highly+Enhanced+Electrochemical+Overall+Water+Splitting+Activity&rft.date=&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Zhang%2C+Jian&rft.pub=Wiley-VCH+Verlag&rft.format=ElectronicSerialComponentPart&rft.language=English
SOLR
_version_ 1797818056398864384
author Zhang, Jian
author2 Wang, Tao, Pohl, Darius, Rellinghaus, Bernd, Dong, Renhao, Liu, Shaohua, Zhuang, Xiaodong, Feng, Xinliang
author2_role , , , , , ,
author2_variant t w tw, d p dp, b r br, r d rd, s l sl, x z xz, x f xf
author_facet Zhang, Jian, Wang, Tao, Pohl, Darius, Rellinghaus, Bernd, Dong, Renhao, Liu, Shaohua, Zhuang, Xiaodong, Feng, Xinliang
author_role
author_sort Zhang, Jian
author_variant j z jz
building Library A
collection sid-22-col-qucosa
container_reference Angewandte Chemie: a journal of the Gesellschaft Deutscher Chemiker International Edition (2016), 55(23). S. 6702-6707. ISSN: 1521-3773. DOI: 10.1002/anie.201602237
contents To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Here, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ~218 mV at 10 mA cm-2, which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyser delivers a current density of 10 mA cm-2 at a very low cell voltage of ~1.56 V. In combination with density function theory (DFT) calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygencontaining intermediates, thus accelerating the overall electrochemical water splitting.
dewey-full 540
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 540 - Chemistry and allied sciences
dewey-raw 540
dewey-search 540
dewey-sort 3540
dewey-tens 540 - Chemistry and allied sciences
facet_avail Online, Free
finc_class_facet Chemie und Pharmazie
fincclass_txtF_mv science-chemistry
format ElectronicSerialComponentPart
format_access_txtF_mv Article, E-Article
format_de105 Ebook
format_de14 Article, E-Article
format_de15 Article, E-Article
format_del152 Buch
format_detail_txtF_mv text-online-journal-child
format_dezi4 Journal
format_finc Article, E-Article
format_legacy ElectronicArticle
format_legacy_nrw Article, E-Article
format_nrw Article, E-Article
format_strict_txtF_mv E-Article
geogr_code not assigned
geogr_code_person not assigned
hierarchy_sequence Angewandte Chemie: a journal of the Gesellschaft Deutscher Chemiker International Edition (2016), 55(23). S. 6702-6707. ISSN: 1521-3773. DOI: 10.1002/anie.201602237
id 22-14-qucosa-235457
illustrated Not Illustrated
imprint Weinheim, Wiley-VCH Verlag
imprint_str_mv Online-Ausg.: 2018
institution DE-105, DE-Gla1, DE-Brt1, DE-D161, DE-540, DE-Pl11, DE-Rs1, DE-Bn3, DE-Zi4, DE-Zwi2, DE-D117, DE-Mh31, DE-D275, DE-Ch1, DE-15, DE-D13, DE-L242, DE-L229, DE-L328
is_hierarchy_id
is_hierarchy_title
language English
last_indexed 2024-05-01T03:08:24.916Z
match_str zhang2018interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity
mega_collection Qucosa
publishDate
publishDateSort 2018
publishPlace Weinheim
publisher Wiley-VCH Verlag
record_format marcfinc
record_id 14-qucosa-235457
recordtype marcfinc
rvk_facet Va 1120
source_id 22
spelling Zhang, Jian, Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity, Weinheim Wiley-VCH Verlag, Online-Ausg. 2018 Online-Ressource (Text) Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Here, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ~218 mV at 10 mA cm-2, which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyser delivers a current density of 10 mA cm-2 at a very low cell voltage of ~1.56 V. In combination with density function theory (DFT) calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygencontaining intermediates, thus accelerating the overall electrochemical water splitting., Grenzflächentechnik, Wasserspaltung, Elektrokatalysatoren, Nickelsulfid, Molybdändisulfid, Interface Engineering, Water Splitting, Electrocatalysts, Nickel Sulfide, Molybdenum Disulfide, Wang, Tao, Pohl, Darius, Rellinghaus, Bernd, Dong, Renhao, Liu, Shaohua, Zhuang, Xiaodong, Feng, Xinliang, Angewandte Chemie: a journal of the Gesellschaft Deutscher Chemiker International Edition (2016), 55(23). S. 6702-6707. ISSN: 1521-3773. DOI: 10.1002/anie.201602237, text/html https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-235457 Online-Zugriff
spellingShingle Zhang, Jian, Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity: Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity, To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Here, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ~218 mV at 10 mA cm-2, which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyser delivers a current density of 10 mA cm-2 at a very low cell voltage of ~1.56 V. In combination with density function theory (DFT) calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygencontaining intermediates, thus accelerating the overall electrochemical water splitting., Grenzflächentechnik, Wasserspaltung, Elektrokatalysatoren, Nickelsulfid, Molybdändisulfid, Interface Engineering, Water Splitting, Electrocatalysts, Nickel Sulfide, Molybdenum Disulfide
title Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity: Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_auth Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_full Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_fullStr Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_full_unstemmed Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_in_hierarchy
title_short Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_sort interface engineering of mos2/ni3s2 heterostructures for highly enhanced electrochemical overall water splitting activity interface engineering of mos2/ni3s2 heterostructures for highly enhanced electrochemical overall water splitting activity
title_sub Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
title_unstemmed Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity: Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall Water Splitting Activity
topic Grenzflächentechnik, Wasserspaltung, Elektrokatalysatoren, Nickelsulfid, Molybdändisulfid, Interface Engineering, Water Splitting, Electrocatalysts, Nickel Sulfide, Molybdenum Disulfide
topic_facet Grenzflächentechnik, Wasserspaltung, Elektrokatalysatoren, Nickelsulfid, Molybdändisulfid, Interface Engineering, Water Splitting, Electrocatalysts, Nickel Sulfide, Molybdenum Disulfide
url https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-235457
urn urn:nbn:de:bsz:14-qucosa-235457
work_keys_str_mv AT zhangjian interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT wangtao interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT pohldarius interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT rellinghausbernd interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT dongrenhao interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT liushaohua interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT zhuangxiaodong interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity, AT fengxinliang interfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivityinterfaceengineeringofmos2ni3s2heterostructuresforhighlyenhancedelectrochemicaloverallwatersplittingactivity