Eintrag weiter verarbeiten

Molecular Conformation and Organic Photochemistry: Time-resolved Photoionization Studies

Gespeichert in:

Personen und Körperschaften: Brogaard, Rasmus Y. (VerfasserIn)
Titel: Molecular Conformation and Organic Photochemistry: Time-resolved Photoionization Studies/ by Rasmus Y. Brogaard
Format: E-Book
Sprache: Englisch
veröffentlicht:
Berlin, Heidelberg Springer Berlin Heidelberg 2012
Gesamtaufnahme: Springer Theses, Recognizing Outstanding Ph.D. Research
SpringerLink
Schlagwörter:
Quelle: Verbunddaten SWB
Zugangsinformationen: Elektronischer Volltext - Campuslizenz
LEADER 08182cam a22009492 4500
001 0-1651498318
003 DE-627
005 20230426032501.0
007 cr uuu---uuuuu
008 120604s2012 gw |||||o 00| ||eng c
020 |a 9783642293818  |9 978-3-642-29381-8 
024 7 |a 10.1007/978-3-642-29381-8  |2 doi 
035 |a (DE-627)1651498318 
035 |a (DE-576)366284193 
035 |a (DE-599)BSZ366284193 
035 |a (OCoLC)801683838 
035 |a (DE-He213)978-3-642-29381-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE 
050 0 |a QD95-96 
082 0 |a 543.2543.8 
082 0 |a 547  |a 547.13  |a 547/.13 
084 |a VK 5600  |q BVB  |2 rvk  |0 (DE-625)rvk/147407:253 
084 |a PNFS  |2 bicssc 
084 |a SCI078000  |2 bisacsh 
100 1 |a Brogaard, Rasmus Y.  |4 aut 
245 1 0 |a Molecular Conformation and Organic Photochemistry  |b Time-resolved Photoionization Studies  |c by Rasmus Y. Brogaard 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2012 
300 |a Online-Ressource (XVI, 122 p. 50 illus., 19 illus. in color, digital) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
490 0 |a SpringerLink  |a Bücher 
500 |a Description based upon print version of record 
505 8 0 |a Molecular Conformationand Organic Photochemistry; Supervisors' Foreword; Preface; Contents; Abbreviations; Part I Ultrafast Photochemistry; 1 Introduction; 1.1 Motivation: Molecular Conformation and Photochemistry; References; 2 Aspects and Investigation of Photochemical Dynamics; 2.1 Photochemical Reaction Mechanisms; 2.1.1 The Photochemical Funnel; 2.1.2 Non-Adiabatic Dynamics; 2.1.3 Intersystem Crossing; 2.1.4 Ultrafast Reactivity; 2.2 Probing Ultrafast Dynamics: The Pump--Probe Principle; 2.2.1 Coherence; 2.2.2 Pump: Creation of a Wave Packet; 2.2.3 Probe: Projection onto a Final State 
505 8 0 |a 2.2.4 Experimental Techniques2.3 What is Probed?; 2.3.1 The Final State; 2.3.2 Sample Averaging; References; 3 A Time-Resolved Probing Method: Photoionization; 3.1 Fundamentals; 3.1.1 The Final State; 3.1.2 Ionization Correlations; 3.2 Probing Non-Adiabatic Dynamics Through Photoionization; 3.2.1 Choosing a Pump--Probe Scheme; 3.3 Analyzing and Interpreting Experimental Results; 3.3.1 Ultrafast Dynamics Modeled by First Order Kinetics; 3.3.2 Time-Resolved Mass Spectrometry; 3.3.3 Time-Resolved Photoelectron Spectroscopy; References; Part II Theory 
505 8 0 |a 4 Simulation of Time-Resolved Photoionization Signals4.1 Quantum Molecular Dynamics: The AIMS Method; 4.1.1 Electronic Structure; 4.1.2 The Nuclear Wave Function and Equations of Motion; 4.1.3 Non-Adiabatic Dynamics: Spawning New Basis Functions; 4.1.4 Conducting an AIMS Simulation; 4.2 Theoretical Framework for Signal Simulation; 4.2.1 The Electronic Photoionization Matrix Element; 4.2.2 Dyson Orbitals; 4.2.3 Simulation of Time-Resolved Photoelectron Spectra; References; 5 Simulation: The Norrish Type-I Reaction in Acetone; 5.1 Motivation; 5.2 Computational Details 
505 8 0 |a 5.3 Results and Discussion5.3.1 Electronic State Populations; 5.3.2 Nuclear Dynamics; 5.3.3 Simulation of TRMS and TRPES Signals; 5.4 Conclusion; References; Part III Experiments; 6 Experimental Setups; 6.1 Femtolab Copenhagen; 6.1.1 Laser System; 6.1.2 The Time-of-Flight Spectrometer and Continuous Inlet System; 6.2 Molecular Photonics Group; 6.2.1 Laser System; 6.2.2 The Magnetic Bottle and Pulsed Inlet System; References; 7 Paracyclophanes I: [2+2]cycloaddition of Ethylenes; 7.1 Studying Bimolecular Reaction Dynamics with Femtosecond Time-Resolution; 7.2 Motivation; 7.3 Results 
505 8 0 |a 7.3.1 Ab Initio Calculations7.3.2 Time-Resolved Photoelectron Spectra; 7.4 Discussion; 7.4.1 Pseudo-para-divinyl[2.2]paracyclophane (PARA-V); 7.4.2 Pseudo-gem-divinyl[2.2]paracyclophane (GEM-V); 7.5 Conclusion; References; 8 Paracyclophanes II: The Paternò-Büchi Reaction; 8.1 Motivation; 8.2 Results; 8.2.1 Computational Results; 8.2.2 Time-Resolved Photoelectron Spectra; 8.3 Discussion; 8.3.1 Pseudo-para-vinylformyl[2.2]paracyclophane (PARA-VF); 8.3.2 Pseudo-gem-vinylformyl[2.2]paracyclophane (GEM-VF); 8.4 Conclusion; References 
505 8 0 |a 9 Probing Structural Dynamics by Interaction Between Chromophores 
520 |a Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics 
520 |a Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics. 
650 0 |a Spectroscopy 
650 0 |a Chemistry, Physical organic 
650 0 |a Chemistry 
650 0 |a Chemistry 
650 0 |a Spectroscopy 
650 0 |a Chemistry, Physical organic 
689 0 0 |d s  |0 (DE-588)4043816-8  |0 (DE-627)106208357  |0 (DE-576)209057505  |a Organische Verbindungen  |2 gnd 
689 0 1 |d s  |0 (DE-588)4174506-1  |0 (DE-627)105371610  |0 (DE-576)209957336  |a Fotoionisation  |2 gnd 
689 0 |5 DE-101 
776 1 |z 9783642293801 
776 0 8 |i Buchausg. u.d.T.  |z 978-3-642-29380-1 
856 4 0 |u https://doi.org/10.1007/978-3-642-29381-8  |x Verlag  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29381-8  |x Verlag  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz366284193cov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20140213092445  |3 Cover 
889 |w (DE-627)717377466 
912 |a ZDB-2-CMS 
912 |a ZDB-2-CMS  |b 2012 
935 |h GBV  |i ExPruef 
936 r v |a VK 5600  |b Allgemeines  |k Organische Chemie  |k Organische Chemie allgemein  |k Fotochemie organischer Verbindungen; Kernstrahlung organischer Verbindungen  |k Allgemeines  |0 (DE-627)1271590697  |0 (DE-625)rvk/147407:253  |0 (DE-576)201590697 
951 |a BO 
950 |a Photoionisation 
950 |a Atomarer Photoeffekt 
950 |a Atomarer Fotoeffekt 
950 |a Ionisation 
950 |a Fotoeffekt 
950 |a Organische Verbindung 
950 |a Chemische Verbindungen 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29381-8  |9 DE-Ch1 
852 |a DE-Ch1  |x epn:3349717144  |z 2012-06-04T13:39:43Z 
972 |k Campuslizenz 
972 |c EBOOK 
852 |a DE-105  |x epn:3349717152  |z 2018-03-13T10:52:09Z 
976 |h Elektronischer Volltext - Campuslizenz 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29381-8  |z Zum Online-Dokument  |9 DE-Zi4 
852 |a DE-Zi4  |x epn:3349717195  |z 2012-06-04T13:39:43Z 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29381-8  |9 DE-520 
852 |a DE-520  |x epn:334971725X  |z 2012-06-04T13:39:43Z 
980 |a 1651498318  |b 0  |k 1651498318  |o 366284193 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Molecular+Conformation+and+Organic+Photochemistry%3A+Time-resolved+Photoionization+Studies&rft.date=2012&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Molecular+Conformation+and+Organic+Photochemistry%3A+Time-resolved+Photoionization+Studies&rft.series=Springer+Theses%2C+Recognizing+Outstanding+Ph.D.+Research&rft.au=Brogaard%2C+Rasmus+Y.&rft.pub=Springer+Berlin+Heidelberg&rft.edition=&rft.isbn=3642293816
SOLR
_version_ 1796700342040133632
author Brogaard, Rasmus Y.
author_facet Brogaard, Rasmus Y.
author_role aut
author_sort Brogaard, Rasmus Y.
author_variant r y b ry ryb
callnumber-first Q - Science
callnumber-label QD95-96
callnumber-raw QD95-96
callnumber-search QD95-96
callnumber-sort QD 295 296
callnumber-subject QD - Chemistry
collection ZDB-2-CMS
contents Molecular Conformationand Organic Photochemistry; Supervisors' Foreword; Preface; Contents; Abbreviations; Part I Ultrafast Photochemistry; 1 Introduction; 1.1 Motivation: Molecular Conformation and Photochemistry; References; 2 Aspects and Investigation of Photochemical Dynamics; 2.1 Photochemical Reaction Mechanisms; 2.1.1 The Photochemical Funnel; 2.1.2 Non-Adiabatic Dynamics; 2.1.3 Intersystem Crossing; 2.1.4 Ultrafast Reactivity; 2.2 Probing Ultrafast Dynamics: The Pump--Probe Principle; 2.2.1 Coherence; 2.2.2 Pump: Creation of a Wave Packet; 2.2.3 Probe: Projection onto a Final State, 2.2.4 Experimental Techniques2.3 What is Probed?; 2.3.1 The Final State; 2.3.2 Sample Averaging; References; 3 A Time-Resolved Probing Method: Photoionization; 3.1 Fundamentals; 3.1.1 The Final State; 3.1.2 Ionization Correlations; 3.2 Probing Non-Adiabatic Dynamics Through Photoionization; 3.2.1 Choosing a Pump--Probe Scheme; 3.3 Analyzing and Interpreting Experimental Results; 3.3.1 Ultrafast Dynamics Modeled by First Order Kinetics; 3.3.2 Time-Resolved Mass Spectrometry; 3.3.3 Time-Resolved Photoelectron Spectroscopy; References; Part II Theory, 4 Simulation of Time-Resolved Photoionization Signals4.1 Quantum Molecular Dynamics: The AIMS Method; 4.1.1 Electronic Structure; 4.1.2 The Nuclear Wave Function and Equations of Motion; 4.1.3 Non-Adiabatic Dynamics: Spawning New Basis Functions; 4.1.4 Conducting an AIMS Simulation; 4.2 Theoretical Framework for Signal Simulation; 4.2.1 The Electronic Photoionization Matrix Element; 4.2.2 Dyson Orbitals; 4.2.3 Simulation of Time-Resolved Photoelectron Spectra; References; 5 Simulation: The Norrish Type-I Reaction in Acetone; 5.1 Motivation; 5.2 Computational Details, 5.3 Results and Discussion5.3.1 Electronic State Populations; 5.3.2 Nuclear Dynamics; 5.3.3 Simulation of TRMS and TRPES Signals; 5.4 Conclusion; References; Part III Experiments; 6 Experimental Setups; 6.1 Femtolab Copenhagen; 6.1.1 Laser System; 6.1.2 The Time-of-Flight Spectrometer and Continuous Inlet System; 6.2 Molecular Photonics Group; 6.2.1 Laser System; 6.2.2 The Magnetic Bottle and Pulsed Inlet System; References; 7 Paracyclophanes I: [2+2]cycloaddition of Ethylenes; 7.1 Studying Bimolecular Reaction Dynamics with Femtosecond Time-Resolution; 7.2 Motivation; 7.3 Results, 7.3.1 Ab Initio Calculations7.3.2 Time-Resolved Photoelectron Spectra; 7.4 Discussion; 7.4.1 Pseudo-para-divinyl[2.2]paracyclophane (PARA-V); 7.4.2 Pseudo-gem-divinyl[2.2]paracyclophane (GEM-V); 7.5 Conclusion; References; 8 Paracyclophanes II: The Paternò-Büchi Reaction; 8.1 Motivation; 8.2 Results; 8.2.1 Computational Results; 8.2.2 Time-Resolved Photoelectron Spectra; 8.3 Discussion; 8.3.1 Pseudo-para-vinylformyl[2.2]paracyclophane (PARA-VF); 8.3.2 Pseudo-gem-vinylformyl[2.2]paracyclophane (GEM-VF); 8.4 Conclusion; References, 9 Probing Structural Dynamics by Interaction Between Chromophores, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics.
ctrlnum (DE-627)1651498318, (DE-576)366284193, (DE-599)BSZ366284193, (OCoLC)801683838, (DE-He213)978-3-642-29381-8
de105_date 2018-03-13T10:52:09Z
dech1_date 2012-06-04T13:39:43Z
dewey-full 543.2543.8, 547, 547.13, 547/.13
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 543 - Analytical chemistry, 547 - Organic chemistry
dewey-raw 543.2543.8, 547, 547.13, 547/.13
dewey-search 543.2543.8, 547, 547.13, 547/.13
dewey-sort 3543.2543 18
dewey-tens 540 - Chemistry and allied sciences
doi_str_mv 10.1007/978-3-642-29381-8
facet_912a ZDB-2-CMS
facet_avail Online
facet_local_del330 Organische Verbindungen, Fotoionisation
finc_class_facet Chemie und Pharmazie
finc_id_str 0004226866
fincclass_txtF_mv science-chemistry
footnote Description based upon print version of record
format eBook
format_access_txtF_mv Book, E-Book
format_de105 Ebook
format_de14 Book, E-Book
format_de15 Book, E-Book
format_del152 Buch
format_detail_txtF_mv text-online-monograph-independent
format_dezi4 e-Book
format_finc Book, E-Book
format_legacy ElectronicBook
format_legacy_nrw Book, E-Book
format_nrw Book, E-Book
format_strict_txtF_mv E-Book
geogr_code not assigned
geogr_code_person not assigned
id 0-1651498318
illustrated Not Illustrated
imprint Berlin, Heidelberg, Springer Berlin Heidelberg, 2012
imprint_str_mv Berlin, Heidelberg: Springer Berlin Heidelberg, 2012
institution DE-105, DE-Zi4, DE-Ch1, DE-520
is_hierarchy_id
is_hierarchy_title
isbn 9783642293818
isbn_isn_mv 9783642293801, 978-3-642-29380-1
kxp_id_str 1651498318
language English
last_indexed 2024-04-18T19:02:49.594Z
local_heading_facet_dezwi2 Spectroscopy, Chemistry, Physical organic, Chemistry, Organische Verbindungen, Fotoionisation
marc024a_ct_mv 10.1007/978-3-642-29381-8
marc_error [geogr_code]Unable to make public java.lang.AbstractStringBuilder java.lang.AbstractStringBuilder.append(java.lang.String) accessible: module java.base does not "opens java.lang" to unnamed module @d9403fb, Minor Error : Subfield tag is an invalid uppercase character, changing it to lower case. --- [ 689 : D ], Minor Error : Subfield tag is an invalid uppercase character, changing it to lower case. --- [ 689 : D ]
match_str brogaard2012molecularconformationandorganicphotochemistrytimeresolvedphotoionizationstudies
mega_collection Verbunddaten SWB
misc_de105 EBOOK
oclc_num 801683838
physical Online-Ressource (XVI, 122 p. 50 illus., 19 illus. in color, digital)
publishDate 2012
publishDateSort 2012
publishPlace Berlin, Heidelberg
publisher Springer Berlin Heidelberg
record_format marcfinc
record_id 366284193
recordtype marcfinc
rvk_facet VK 5600
rvk_label Organische Chemie, Organische Chemie allgemein, Fotochemie organischer Verbindungen; Kernstrahlung organischer Verbindungen, Allgemeines
rvk_path VK 5600, VK, VK 5000 - VK 8809, V, VK 5600 - VK 5609
rvk_path_str_mv VK 5600, VK, VK 5000 - VK 8809, V, VK 5600 - VK 5609
series2 Springer Theses, Recognizing Outstanding Ph.D. Research, SpringerLink ; Bücher
source_id 0
spelling Brogaard, Rasmus Y. aut, Molecular Conformation and Organic Photochemistry Time-resolved Photoionization Studies by Rasmus Y. Brogaard, Berlin, Heidelberg Springer Berlin Heidelberg 2012, Online-Ressource (XVI, 122 p. 50 illus., 19 illus. in color, digital), Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, Springer Theses, Recognizing Outstanding Ph.D. Research, SpringerLink Bücher, Description based upon print version of record, Molecular Conformationand Organic Photochemistry; Supervisors' Foreword; Preface; Contents; Abbreviations; Part I Ultrafast Photochemistry; 1 Introduction; 1.1 Motivation: Molecular Conformation and Photochemistry; References; 2 Aspects and Investigation of Photochemical Dynamics; 2.1 Photochemical Reaction Mechanisms; 2.1.1 The Photochemical Funnel; 2.1.2 Non-Adiabatic Dynamics; 2.1.3 Intersystem Crossing; 2.1.4 Ultrafast Reactivity; 2.2 Probing Ultrafast Dynamics: The Pump--Probe Principle; 2.2.1 Coherence; 2.2.2 Pump: Creation of a Wave Packet; 2.2.3 Probe: Projection onto a Final State, 2.2.4 Experimental Techniques2.3 What is Probed?; 2.3.1 The Final State; 2.3.2 Sample Averaging; References; 3 A Time-Resolved Probing Method: Photoionization; 3.1 Fundamentals; 3.1.1 The Final State; 3.1.2 Ionization Correlations; 3.2 Probing Non-Adiabatic Dynamics Through Photoionization; 3.2.1 Choosing a Pump--Probe Scheme; 3.3 Analyzing and Interpreting Experimental Results; 3.3.1 Ultrafast Dynamics Modeled by First Order Kinetics; 3.3.2 Time-Resolved Mass Spectrometry; 3.3.3 Time-Resolved Photoelectron Spectroscopy; References; Part II Theory, 4 Simulation of Time-Resolved Photoionization Signals4.1 Quantum Molecular Dynamics: The AIMS Method; 4.1.1 Electronic Structure; 4.1.2 The Nuclear Wave Function and Equations of Motion; 4.1.3 Non-Adiabatic Dynamics: Spawning New Basis Functions; 4.1.4 Conducting an AIMS Simulation; 4.2 Theoretical Framework for Signal Simulation; 4.2.1 The Electronic Photoionization Matrix Element; 4.2.2 Dyson Orbitals; 4.2.3 Simulation of Time-Resolved Photoelectron Spectra; References; 5 Simulation: The Norrish Type-I Reaction in Acetone; 5.1 Motivation; 5.2 Computational Details, 5.3 Results and Discussion5.3.1 Electronic State Populations; 5.3.2 Nuclear Dynamics; 5.3.3 Simulation of TRMS and TRPES Signals; 5.4 Conclusion; References; Part III Experiments; 6 Experimental Setups; 6.1 Femtolab Copenhagen; 6.1.1 Laser System; 6.1.2 The Time-of-Flight Spectrometer and Continuous Inlet System; 6.2 Molecular Photonics Group; 6.2.1 Laser System; 6.2.2 The Magnetic Bottle and Pulsed Inlet System; References; 7 Paracyclophanes I: [2+2]cycloaddition of Ethylenes; 7.1 Studying Bimolecular Reaction Dynamics with Femtosecond Time-Resolution; 7.2 Motivation; 7.3 Results, 7.3.1 Ab Initio Calculations7.3.2 Time-Resolved Photoelectron Spectra; 7.4 Discussion; 7.4.1 Pseudo-para-divinyl[2.2]paracyclophane (PARA-V); 7.4.2 Pseudo-gem-divinyl[2.2]paracyclophane (GEM-V); 7.5 Conclusion; References; 8 Paracyclophanes II: The Paternò-Büchi Reaction; 8.1 Motivation; 8.2 Results; 8.2.1 Computational Results; 8.2.2 Time-Resolved Photoelectron Spectra; 8.3 Discussion; 8.3.1 Pseudo-para-vinylformyl[2.2]paracyclophane (PARA-VF); 8.3.2 Pseudo-gem-vinylformyl[2.2]paracyclophane (GEM-VF); 8.4 Conclusion; References, 9 Probing Structural Dynamics by Interaction Between Chromophores, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics., Spectroscopy, Chemistry, Physical organic, Chemistry, s (DE-588)4043816-8 (DE-627)106208357 (DE-576)209057505 Organische Verbindungen gnd, s (DE-588)4174506-1 (DE-627)105371610 (DE-576)209957336 Fotoionisation gnd, DE-101, 9783642293801, Buchausg. u.d.T. 978-3-642-29380-1, https://doi.org/10.1007/978-3-642-29381-8 Verlag Volltext, http://dx.doi.org/10.1007/978-3-642-29381-8 Verlag Volltext, https://swbplus.bsz-bw.de/bsz366284193cov.jpg V:DE-576 X:springer image/jpeg 20140213092445 Cover, (DE-627)717377466, http://dx.doi.org/10.1007/978-3-642-29381-8 DE-Ch1, DE-Ch1 epn:3349717144 2012-06-04T13:39:43Z, DE-105 epn:3349717152 2018-03-13T10:52:09Z, http://dx.doi.org/10.1007/978-3-642-29381-8 Zum Online-Dokument DE-Zi4, DE-Zi4 epn:3349717195 2012-06-04T13:39:43Z, http://dx.doi.org/10.1007/978-3-642-29381-8 DE-520, DE-520 epn:334971725X 2012-06-04T13:39:43Z
spellingShingle Brogaard, Rasmus Y., Molecular Conformation and Organic Photochemistry: Time-resolved Photoionization Studies, Molecular Conformationand Organic Photochemistry; Supervisors' Foreword; Preface; Contents; Abbreviations; Part I Ultrafast Photochemistry; 1 Introduction; 1.1 Motivation: Molecular Conformation and Photochemistry; References; 2 Aspects and Investigation of Photochemical Dynamics; 2.1 Photochemical Reaction Mechanisms; 2.1.1 The Photochemical Funnel; 2.1.2 Non-Adiabatic Dynamics; 2.1.3 Intersystem Crossing; 2.1.4 Ultrafast Reactivity; 2.2 Probing Ultrafast Dynamics: The Pump--Probe Principle; 2.2.1 Coherence; 2.2.2 Pump: Creation of a Wave Packet; 2.2.3 Probe: Projection onto a Final State, 2.2.4 Experimental Techniques2.3 What is Probed?; 2.3.1 The Final State; 2.3.2 Sample Averaging; References; 3 A Time-Resolved Probing Method: Photoionization; 3.1 Fundamentals; 3.1.1 The Final State; 3.1.2 Ionization Correlations; 3.2 Probing Non-Adiabatic Dynamics Through Photoionization; 3.2.1 Choosing a Pump--Probe Scheme; 3.3 Analyzing and Interpreting Experimental Results; 3.3.1 Ultrafast Dynamics Modeled by First Order Kinetics; 3.3.2 Time-Resolved Mass Spectrometry; 3.3.3 Time-Resolved Photoelectron Spectroscopy; References; Part II Theory, 4 Simulation of Time-Resolved Photoionization Signals4.1 Quantum Molecular Dynamics: The AIMS Method; 4.1.1 Electronic Structure; 4.1.2 The Nuclear Wave Function and Equations of Motion; 4.1.3 Non-Adiabatic Dynamics: Spawning New Basis Functions; 4.1.4 Conducting an AIMS Simulation; 4.2 Theoretical Framework for Signal Simulation; 4.2.1 The Electronic Photoionization Matrix Element; 4.2.2 Dyson Orbitals; 4.2.3 Simulation of Time-Resolved Photoelectron Spectra; References; 5 Simulation: The Norrish Type-I Reaction in Acetone; 5.1 Motivation; 5.2 Computational Details, 5.3 Results and Discussion5.3.1 Electronic State Populations; 5.3.2 Nuclear Dynamics; 5.3.3 Simulation of TRMS and TRPES Signals; 5.4 Conclusion; References; Part III Experiments; 6 Experimental Setups; 6.1 Femtolab Copenhagen; 6.1.1 Laser System; 6.1.2 The Time-of-Flight Spectrometer and Continuous Inlet System; 6.2 Molecular Photonics Group; 6.2.1 Laser System; 6.2.2 The Magnetic Bottle and Pulsed Inlet System; References; 7 Paracyclophanes I: [2+2]cycloaddition of Ethylenes; 7.1 Studying Bimolecular Reaction Dynamics with Femtosecond Time-Resolution; 7.2 Motivation; 7.3 Results, 7.3.1 Ab Initio Calculations7.3.2 Time-Resolved Photoelectron Spectra; 7.4 Discussion; 7.4.1 Pseudo-para-divinyl[2.2]paracyclophane (PARA-V); 7.4.2 Pseudo-gem-divinyl[2.2]paracyclophane (GEM-V); 7.5 Conclusion; References; 8 Paracyclophanes II: The Paternò-Büchi Reaction; 8.1 Motivation; 8.2 Results; 8.2.1 Computational Results; 8.2.2 Time-Resolved Photoelectron Spectra; 8.3 Discussion; 8.3.1 Pseudo-para-vinylformyl[2.2]paracyclophane (PARA-VF); 8.3.2 Pseudo-gem-vinylformyl[2.2]paracyclophane (GEM-VF); 8.4 Conclusion; References, 9 Probing Structural Dynamics by Interaction Between Chromophores, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics, Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecules relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics., Spectroscopy, Chemistry, Physical organic, Chemistry, Organische Verbindungen, Fotoionisation
swb_id_str 366284193
title Molecular Conformation and Organic Photochemistry: Time-resolved Photoionization Studies
title_auth Molecular Conformation and Organic Photochemistry Time-resolved Photoionization Studies
title_full Molecular Conformation and Organic Photochemistry Time-resolved Photoionization Studies by Rasmus Y. Brogaard
title_fullStr Molecular Conformation and Organic Photochemistry Time-resolved Photoionization Studies by Rasmus Y. Brogaard
title_full_unstemmed Molecular Conformation and Organic Photochemistry Time-resolved Photoionization Studies by Rasmus Y. Brogaard
title_short Molecular Conformation and Organic Photochemistry
title_sort molecular conformation and organic photochemistry time-resolved photoionization studies
title_sub Time-resolved Photoionization Studies
title_unstemmed Molecular Conformation and Organic Photochemistry: Time-resolved Photoionization Studies
topic Spectroscopy, Chemistry, Physical organic, Chemistry, Organische Verbindungen, Fotoionisation
topic_facet Spectroscopy, Chemistry, Physical organic, Chemistry, Organische Verbindungen, Fotoionisation
url https://doi.org/10.1007/978-3-642-29381-8, http://dx.doi.org/10.1007/978-3-642-29381-8, https://swbplus.bsz-bw.de/bsz366284193cov.jpg
work_keys_str_mv AT brogaardrasmusy molecularconformationandorganicphotochemistrytimeresolvedphotoionizationstudies