author_facet Lee, Seung Goo
Lee, Hyundo
Gupta, Ankur
Chang, Sehoon
Doyle, Patrick S.
Lee, Seung Goo
Lee, Hyundo
Gupta, Ankur
Chang, Sehoon
Doyle, Patrick S.
author Lee, Seung Goo
Lee, Hyundo
Gupta, Ankur
Chang, Sehoon
Doyle, Patrick S.
spellingShingle Lee, Seung Goo
Lee, Hyundo
Gupta, Ankur
Chang, Sehoon
Doyle, Patrick S.
Advanced Functional Materials
Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
author_sort lee, seung goo
spelling Lee, Seung Goo Lee, Hyundo Gupta, Ankur Chang, Sehoon Doyle, Patrick S. 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.201600573 <jats:p>Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO<jats:sub>3</jats:sub>) micromodels composed of in situ grown CaCO<jats:sub>3</jats:sub>. CaCO<jats:sub>3</jats:sub> nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO<jats:sub>3</jats:sub> nanoparticles are selectively grown in situ from these microstructures by supplying Ca<jats:sup>2+</jats:sup>, CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup> ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO<jats:sub>3</jats:sub> reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.</jats:p> Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability Advanced Functional Materials
doi_str_mv 10.1002/adfm.201600573
facet_avail Online
finc_class_facet Technik
Physik
Chemie und Pharmazie
Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTYwMDU3Mw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTYwMDU3Mw
institution DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
imprint Wiley, 2016
imprint_str_mv Wiley, 2016
issn 1616-301X
1616-3028
issn_str_mv 1616-301X
1616-3028
language English
mega_collection Wiley (CrossRef)
match_str lee2016siteselectiveinsitugrowncalciumcarbonatemicromodelswithtunablegeometryporosityandwettability
publishDateSort 2016
publisher Wiley
recordtype ai
record_format ai
series Advanced Functional Materials
source_id 49
title Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_unstemmed Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_full Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_fullStr Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_full_unstemmed Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_short Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_sort site‐selective in situ grown calcium carbonate micromodels with tunable geometry, porosity, and wettability
topic Electrochemistry
Condensed Matter Physics
Biomaterials
Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.201600573
publishDate 2016
physical 4896-4905
description <jats:p>Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO<jats:sub>3</jats:sub>) micromodels composed of in situ grown CaCO<jats:sub>3</jats:sub>. CaCO<jats:sub>3</jats:sub> nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO<jats:sub>3</jats:sub> nanoparticles are selectively grown in situ from these microstructures by supplying Ca<jats:sup>2+</jats:sup>, CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup> ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO<jats:sub>3</jats:sub> reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.</jats:p>
container_issue 27
container_start_page 4896
container_title Advanced Functional Materials
container_volume 26
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343416947867653
geogr_code not assigned
last_indexed 2024-03-01T16:51:18.266Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Site%E2%80%90Selective+In+Situ+Grown+Calcium+Carbonate+Micromodels+with+Tunable+Geometry%2C+Porosity%2C+and+Wettability&rft.date=2016-07-01&genre=article&issn=1616-3028&volume=26&issue=27&spage=4896&epage=4905&pages=4896-4905&jtitle=Advanced+Functional+Materials&atitle=Site%E2%80%90Selective+In+Situ+Grown+Calcium+Carbonate+Micromodels+with+Tunable+Geometry%2C+Porosity%2C+and+Wettability&aulast=Doyle&aufirst=Patrick+S.&rft_id=info%3Adoi%2F10.1002%2Fadfm.201600573&rft.language%5B0%5D=eng
SOLR
_version_ 1792343416947867653
author Lee, Seung Goo, Lee, Hyundo, Gupta, Ankur, Chang, Sehoon, Doyle, Patrick S.
author_facet Lee, Seung Goo, Lee, Hyundo, Gupta, Ankur, Chang, Sehoon, Doyle, Patrick S., Lee, Seung Goo, Lee, Hyundo, Gupta, Ankur, Chang, Sehoon, Doyle, Patrick S.
author_sort lee, seung goo
container_issue 27
container_start_page 4896
container_title Advanced Functional Materials
container_volume 26
description <jats:p>Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO<jats:sub>3</jats:sub>) micromodels composed of in situ grown CaCO<jats:sub>3</jats:sub>. CaCO<jats:sub>3</jats:sub> nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO<jats:sub>3</jats:sub> nanoparticles are selectively grown in situ from these microstructures by supplying Ca<jats:sup>2+</jats:sup>, CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup> ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO<jats:sub>3</jats:sub> reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.</jats:p>
doi_str_mv 10.1002/adfm.201600573
facet_avail Online
finc_class_facet Technik, Physik, Chemie und Pharmazie, Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi9hZGZtLjIwMTYwMDU3Mw
imprint Wiley, 2016
imprint_str_mv Wiley, 2016
institution DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1
issn 1616-301X, 1616-3028
issn_str_mv 1616-301X, 1616-3028
language English
last_indexed 2024-03-01T16:51:18.266Z
match_str lee2016siteselectiveinsitugrowncalciumcarbonatemicromodelswithtunablegeometryporosityandwettability
mega_collection Wiley (CrossRef)
physical 4896-4905
publishDate 2016
publishDateSort 2016
publisher Wiley
record_format ai
recordtype ai
series Advanced Functional Materials
source_id 49
spelling Lee, Seung Goo Lee, Hyundo Gupta, Ankur Chang, Sehoon Doyle, Patrick S. 1616-301X 1616-3028 Wiley Electrochemistry Condensed Matter Physics Biomaterials Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1002/adfm.201600573 <jats:p>Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO<jats:sub>3</jats:sub>) micromodels composed of in situ grown CaCO<jats:sub>3</jats:sub>. CaCO<jats:sub>3</jats:sub> nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO<jats:sub>3</jats:sub> nanoparticles are selectively grown in situ from these microstructures by supplying Ca<jats:sup>2+</jats:sup>, CO<jats:sub>3</jats:sub><jats:sup>2−</jats:sup> ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO<jats:sub>3</jats:sub> reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.</jats:p> Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability Advanced Functional Materials
spellingShingle Lee, Seung Goo, Lee, Hyundo, Gupta, Ankur, Chang, Sehoon, Doyle, Patrick S., Advanced Functional Materials, Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability, Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
title Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_full Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_fullStr Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_full_unstemmed Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_short Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
title_sort site‐selective in situ grown calcium carbonate micromodels with tunable geometry, porosity, and wettability
title_unstemmed Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability
topic Electrochemistry, Condensed Matter Physics, Biomaterials, Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1002/adfm.201600573